| Label |
Class |
Class size |
Class degree |
Base field |
Field degree |
Field signature |
Conductor |
Conductor norm |
Discriminant norm |
Root analytic conductor |
Bad primes |
Rank |
Torsion |
CM |
CM |
Sato-Tate |
$\Q$-curve |
Base change |
Semistable |
Potentially good |
Nonmax $\ell$ |
mod-$\ell$ images |
$Ш_{\textrm{an}}$ |
Tamagawa |
Regulator |
Period |
Leading coeff |
j-invariant |
Weierstrass coefficients |
Weierstrass equation |
| 79.1-a1 |
79.1-a |
$2$ |
$2$ |
\(\Q(\zeta_{20})^+\) |
$4$ |
$[4, 0]$ |
79.1 |
\( 79 \) |
\( 79^{4} \) |
$6.90012$ |
$(a^3-2a^2-2a+6)$ |
0 |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
✓ |
|
$2$ |
2B |
$1$ |
\( 2 \) |
$1$ |
$111.2348527$ |
1.243643460 |
\( -\frac{5510821934592}{38950081} a^{3} + \frac{6690282255360}{38950081} a^{2} + \frac{19512202644480}{38950081} a - \frac{23230349035840}{38950081} \) |
\( \bigl[a^{2} + a - 3\) , \( -a^{3} + a^{2} + 3 a - 2\) , \( a^{3} - 2 a\) , \( -a^{3} - 3 a^{2} + 3 a + 7\) , \( 7 a^{3} + 7 a^{2} - 26 a - 29\bigr] \) |
${y}^2+\left(a^{2}+a-3\right){x}{y}+\left(a^{3}-2a\right){y}={x}^{3}+\left(-a^{3}+a^{2}+3a-2\right){x}^{2}+\left(-a^{3}-3a^{2}+3a+7\right){x}+7a^{3}+7a^{2}-26a-29$ |
| 79.1-a2 |
79.1-a |
$2$ |
$2$ |
\(\Q(\zeta_{20})^+\) |
$4$ |
$[4, 0]$ |
79.1 |
\( 79 \) |
\( 79^{2} \) |
$6.90012$ |
$(a^3-2a^2-2a+6)$ |
0 |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
✓ |
|
$2$ |
2B |
$1$ |
\( 2 \) |
$1$ |
$111.2348527$ |
1.243643460 |
\( \frac{613406825313792}{6241} a^{3} - \frac{721103039411200}{6241} a^{2} - \frac{2219326741908480}{6241} a + \frac{2608975307898560}{6241} \) |
\( \bigl[a^{3} + a^{2} - 3 a - 2\) , \( -a^{2} + 2\) , \( a^{3} + a^{2} - 3 a - 3\) , \( 6 a^{2} + 3 a - 15\) , \( -6 a^{3} - 2 a^{2} + 14 a - 7\bigr] \) |
${y}^2+\left(a^{3}+a^{2}-3a-2\right){x}{y}+\left(a^{3}+a^{2}-3a-3\right){y}={x}^{3}+\left(-a^{2}+2\right){x}^{2}+\left(6a^{2}+3a-15\right){x}-6a^{3}-2a^{2}+14a-7$ |
| 79.1-b1 |
79.1-b |
$2$ |
$2$ |
\(\Q(\zeta_{20})^+\) |
$4$ |
$[4, 0]$ |
79.1 |
\( 79 \) |
\( 79^{2} \) |
$6.90012$ |
$(a^3-2a^2-2a+6)$ |
0 |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
✓ |
|
$2$ |
2B |
$1$ |
\( 2 \) |
$1$ |
$155.2093026$ |
1.735292756 |
\( -\frac{51970850297981607}{6241} a^{3} + \frac{98854431667475790}{6241} a^{2} + \frac{71821948689392780}{6241} a - \frac{136613464610314700}{6241} \) |
\( \bigl[a^{3} - 3 a + 1\) , \( a^{2} - 3\) , \( 0\) , \( -4 a - 8\) , \( -7 a^{3} - 10 a^{2} + 18 a + 22\bigr] \) |
${y}^2+\left(a^{3}-3a+1\right){x}{y}={x}^{3}+\left(a^{2}-3\right){x}^{2}+\left(-4a-8\right){x}-7a^{3}-10a^{2}+18a+22$ |
| 79.1-b2 |
79.1-b |
$2$ |
$2$ |
\(\Q(\zeta_{20})^+\) |
$4$ |
$[4, 0]$ |
79.1 |
\( 79 \) |
\( -79 \) |
$6.90012$ |
$(a^3-2a^2-2a+6)$ |
0 |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
✓ |
|
$2$ |
2B |
$1$ |
\( 1 \) |
$1$ |
$310.4186052$ |
1.735292756 |
\( -\frac{78157332}{79} a^{3} + \frac{148661440}{79} a^{2} + \frac{107998540}{79} a - \frac{205350795}{79} \) |
\( \bigl[a^{3} - 3 a + 1\) , \( a^{2} - 3\) , \( 0\) , \( a + 2\) , \( 0\bigr] \) |
${y}^2+\left(a^{3}-3a+1\right){x}{y}={x}^{3}+\left(a^{2}-3\right){x}^{2}+\left(a+2\right){x}$ |
| 79.1-c1 |
79.1-c |
$2$ |
$2$ |
\(\Q(\zeta_{20})^+\) |
$4$ |
$[4, 0]$ |
79.1 |
\( 79 \) |
\( 79^{2} \) |
$6.90012$ |
$(a^3-2a^2-2a+6)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
✓ |
|
$2$ |
2B |
$1$ |
\( 2 \) |
$0.034185335$ |
$921.5828295$ |
1.408929375 |
\( -\frac{51970850297981607}{6241} a^{3} + \frac{98854431667475790}{6241} a^{2} + \frac{71821948689392780}{6241} a - \frac{136613464610314700}{6241} \) |
\( \bigl[a^{3} + a^{2} - 2 a - 2\) , \( -a^{3} + a^{2} + 2 a - 3\) , \( a^{3} + a^{2} - 3 a - 3\) , \( a^{2} - 6 a - 10\) , \( 3 a^{3} + 3 a^{2} - 11 a - 9\bigr] \) |
${y}^2+\left(a^{3}+a^{2}-2a-2\right){x}{y}+\left(a^{3}+a^{2}-3a-3\right){y}={x}^{3}+\left(-a^{3}+a^{2}+2a-3\right){x}^{2}+\left(a^{2}-6a-10\right){x}+3a^{3}+3a^{2}-11a-9$ |
| 79.1-c2 |
79.1-c |
$2$ |
$2$ |
\(\Q(\zeta_{20})^+\) |
$4$ |
$[4, 0]$ |
79.1 |
\( 79 \) |
\( -79 \) |
$6.90012$ |
$(a^3-2a^2-2a+6)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
✓ |
|
$2$ |
2B |
$1$ |
\( 1 \) |
$0.068370671$ |
$921.5828295$ |
1.408929375 |
\( -\frac{78157332}{79} a^{3} + \frac{148661440}{79} a^{2} + \frac{107998540}{79} a - \frac{205350795}{79} \) |
\( \bigl[a^{3} + a^{2} - 2 a - 2\) , \( -a^{3} + a^{2} + 2 a - 3\) , \( a^{3} + a^{2} - 3 a - 3\) , \( a^{2} - a\) , \( a^{3} + 3 a^{2} - 3 a - 7\bigr] \) |
${y}^2+\left(a^{3}+a^{2}-2a-2\right){x}{y}+\left(a^{3}+a^{2}-3a-3\right){y}={x}^{3}+\left(-a^{3}+a^{2}+2a-3\right){x}^{2}+\left(a^{2}-a\right){x}+a^{3}+3a^{2}-3a-7$ |
| 79.1-d1 |
79.1-d |
$2$ |
$2$ |
\(\Q(\zeta_{20})^+\) |
$4$ |
$[4, 0]$ |
79.1 |
\( 79 \) |
\( 79^{4} \) |
$6.90012$ |
$(a^3-2a^2-2a+6)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
✓ |
|
$2$ |
2B |
$1$ |
\( 2^{2} \) |
$0.034572360$ |
$582.6052374$ |
1.801558660 |
\( -\frac{5510821934592}{38950081} a^{3} + \frac{6690282255360}{38950081} a^{2} + \frac{19512202644480}{38950081} a - \frac{23230349035840}{38950081} \) |
\( \bigl[a^{2} + a - 3\) , \( -a^{2} + 3\) , \( a^{2} + a - 2\) , \( -a^{3} - 4 a^{2} + 3 a + 9\) , \( -8 a^{3} - 11 a^{2} + 29 a + 37\bigr] \) |
${y}^2+\left(a^{2}+a-3\right){x}{y}+\left(a^{2}+a-2\right){y}={x}^{3}+\left(-a^{2}+3\right){x}^{2}+\left(-a^{3}-4a^{2}+3a+9\right){x}-8a^{3}-11a^{2}+29a+37$ |
| 79.1-d2 |
79.1-d |
$2$ |
$2$ |
\(\Q(\zeta_{20})^+\) |
$4$ |
$[4, 0]$ |
79.1 |
\( 79 \) |
\( 79^{2} \) |
$6.90012$ |
$(a^3-2a^2-2a+6)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
✓ |
|
$2$ |
2B |
$1$ |
\( 2 \) |
$0.069144720$ |
$582.6052374$ |
1.801558660 |
\( \frac{613406825313792}{6241} a^{3} - \frac{721103039411200}{6241} a^{2} - \frac{2219326741908480}{6241} a + \frac{2608975307898560}{6241} \) |
\( \bigl[a^{3} + a^{2} - 3 a - 2\) , \( a^{2} - a - 4\) , \( a^{2} + a - 2\) , \( -a^{3} + 4 a^{2} + 6 a - 9\) , \( 6 a^{3} + 2 a^{2} - 15 a + 5\bigr] \) |
${y}^2+\left(a^{3}+a^{2}-3a-2\right){x}{y}+\left(a^{2}+a-2\right){y}={x}^{3}+\left(a^{2}-a-4\right){x}^{2}+\left(-a^{3}+4a^{2}+6a-9\right){x}+6a^{3}+2a^{2}-15a+5$ |
*The rank, regulator and analytic order of Ш are
not known for all curves in the database; curves for which these are
unknown will not appear in searches specifying one of these
quantities.