Properties

Label 4.4.17725.1-49.1-a4
Base field 4.4.17725.1
Conductor norm \( 49 \)
CM no
Base change no
Q-curve no
Torsion order \( 4 \)
Rank \( 1 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 4.4.17725.1

Generator \(a\), with minimal polynomial \( x^{4} - 2 x^{3} - 12 x^{2} + 13 x + 41 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([41, 13, -12, -2, 1]))
 
gp: K = nfinit(Polrev([41, 13, -12, -2, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![41, 13, -12, -2, 1]);
 

Weierstrass equation

\({y}^2+\left(a^{2}-7\right){x}{y}+\left(a^{3}-8a-6\right){y}={x}^{3}+\left(a^{3}-a^{2}-8a+1\right){x}^{2}+\left(-a^{3}+8a^{2}+5a-41\right){x}+3a^{3}+2a^{2}-25a-31\)
sage: E = EllipticCurve([K([-7,0,1,0]),K([1,-8,-1,1]),K([-6,-8,0,1]),K([-41,5,8,-1]),K([-31,-25,2,3])])
 
gp: E = ellinit([Polrev([-7,0,1,0]),Polrev([1,-8,-1,1]),Polrev([-6,-8,0,1]),Polrev([-41,5,8,-1]),Polrev([-31,-25,2,3])], K);
 
magma: E := EllipticCurve([K![-7,0,1,0],K![1,-8,-1,1],K![-6,-8,0,1],K![-41,5,8,-1],K![-31,-25,2,3]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((a^2-10)\) = \((a^2-10)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 49 \) = \(49\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((3a^3-9a^2-9a+13)\) = \((a^2-10)^{3}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 117649 \) = \(49^{3}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( -\frac{72741807}{343} a^{3} + 1132866 a^{2} + \frac{41876676}{343} a - \frac{1756222938}{343} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(1\)
Generator $\left(-a^{3} + 4 a^{2} + 5 a - 22 : -3 a^{3} + 4 a^{2} + 19 a - 15 : 1\right)$
Height \(0.26948882381287684799660457606920475597\)
Torsion structure: \(\Z/4\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(a^{2} - 6 : a^{3} - a^{2} - 6 a + 3 : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 1 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(1\)
Regulator: \( 0.26948882381287684799660457606920475597 \)
Period: \( 1254.7822675607785907684262266455203444 \)
Tamagawa product: \( 3 \)
Torsion order: \(4\)
Leading coefficient: \( 1.90492233135250 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((a^2-10)\) \(49\) \(3\) \(I_{3}\) Split multiplicative \(-1\) \(1\) \(3\) \(3\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2 and 4.
Its isogeny class 49.1-a consists of curves linked by isogenies of degrees dividing 4.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.