| Label |
Class |
Class size |
Class degree |
Base field |
Field degree |
Field signature |
Conductor |
Conductor norm |
Discriminant norm |
Root analytic conductor |
Bad primes |
Rank |
Torsion |
CM |
CM |
Sato-Tate |
$\Q$-curve |
Base change |
Semistable |
Potentially good |
Nonmax $\ell$ |
mod-$\ell$ images |
$Ш_{\textrm{an}}$ |
Tamagawa |
Regulator |
Period |
Leading coeff |
j-invariant |
Weierstrass coefficients |
Weierstrass equation |
| 31.1-a1 |
31.1-a |
$6$ |
$8$ |
\(\Q(\zeta_{15})^+\) |
$4$ |
$[4, 0]$ |
31.1 |
\( 31 \) |
\( 31^{4} \) |
$4.60400$ |
$(a^3+2a^2-3a-3)$ |
0 |
$\Z/4\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
✓ |
|
$2$ |
2B |
$1$ |
\( 2 \) |
$1$ |
$226.2402485$ |
0.843147624 |
\( \frac{13262138608154212980818020352}{923521} a^{3} - \frac{16034680544860826249617094257}{923521} a^{2} - \frac{49696393399932989894285277456}{923521} a + \frac{63437929696698697519404008684}{923521} \) |
\( \bigl[a^{3} + a^{2} - 3 a - 1\) , \( a^{3} - a^{2} - 3 a + 1\) , \( 1\) , \( -427 a^{3} - 156 a^{2} + 1210 a - 328\) , \( 5301 a^{3} + 2573 a^{2} - 14446 a + 2048\bigr] \) |
${y}^2+\left(a^{3}+a^{2}-3a-1\right){x}{y}+{y}={x}^{3}+\left(a^{3}-a^{2}-3a+1\right){x}^{2}+\left(-427a^{3}-156a^{2}+1210a-328\right){x}+5301a^{3}+2573a^{2}-14446a+2048$ |
| 31.1-a2 |
31.1-a |
$6$ |
$8$ |
\(\Q(\zeta_{15})^+\) |
$4$ |
$[4, 0]$ |
31.1 |
\( 31 \) |
\( 31^{16} \) |
$4.60400$ |
$(a^3+2a^2-3a-3)$ |
0 |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
✓ |
|
$2$ |
2B |
$4$ |
\( 2 \) |
$1$ |
$14.14001553$ |
0.843147624 |
\( -\frac{69643673441152672038181763072}{727423121747185263828481} a^{3} + \frac{84890779633537182060967675121}{727423121747185263828481} a^{2} + \frac{261357927431140745378290491664}{727423121747185263828481} a - \frac{334879646814468933111035546908}{727423121747185263828481} \) |
\( \bigl[a^{3} + a^{2} - 3 a - 1\) , \( a^{3} - a^{2} - 3 a + 1\) , \( 1\) , \( 113 a^{3} + 114 a^{2} - 280 a - 98\) , \( -a^{3} - 75 a^{2} + 44 a + 78\bigr] \) |
${y}^2+\left(a^{3}+a^{2}-3a-1\right){x}{y}+{y}={x}^{3}+\left(a^{3}-a^{2}-3a+1\right){x}^{2}+\left(113a^{3}+114a^{2}-280a-98\right){x}-a^{3}-75a^{2}+44a+78$ |
| 31.1-a3 |
31.1-a |
$6$ |
$8$ |
\(\Q(\zeta_{15})^+\) |
$4$ |
$[4, 0]$ |
31.1 |
\( 31 \) |
\( 31^{8} \) |
$4.60400$ |
$(a^3+2a^2-3a-3)$ |
0 |
$\Z/2\Z\oplus\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
✓ |
|
$2$ |
2Cs |
$1$ |
\( 2 \) |
$1$ |
$226.2402485$ |
0.843147624 |
\( \frac{43561848213205037510145}{852891037441} a^{3} - \frac{52668771245192606365444}{852891037441} a^{2} - \frac{163236628849912597561348}{852891037441} a + \frac{208373205080817133396719}{852891037441} \) |
\( \bigl[a^{3} + a^{2} - 3 a - 1\) , \( a^{3} - a^{2} - 3 a + 1\) , \( 1\) , \( -37 a^{3} - 21 a^{2} + 105 a - 13\) , \( 2 a^{3} - 25 a^{2} - 17 a + 63\bigr] \) |
${y}^2+\left(a^{3}+a^{2}-3a-1\right){x}{y}+{y}={x}^{3}+\left(a^{3}-a^{2}-3a+1\right){x}^{2}+\left(-37a^{3}-21a^{2}+105a-13\right){x}+2a^{3}-25a^{2}-17a+63$ |
| 31.1-a4 |
31.1-a |
$6$ |
$8$ |
\(\Q(\zeta_{15})^+\) |
$4$ |
$[4, 0]$ |
31.1 |
\( 31 \) |
\( 31^{2} \) |
$4.60400$ |
$(a^3+2a^2-3a-3)$ |
0 |
$\Z/4\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
✓ |
|
$2$ |
2B |
$1$ |
\( 2 \) |
$1$ |
$226.2402485$ |
0.843147624 |
\( -\frac{119292}{961} a^{3} - \frac{1134908}{961} a^{2} + \frac{2242557}{961} a + \frac{309574}{961} \) |
\( \bigl[a^{3} + a^{2} - 3 a - 1\) , \( a^{3} - a^{2} - 3 a + 1\) , \( 1\) , \( -2 a^{3} - a^{2} + 5 a + 2\) , \( -2 a^{3} - 2 a^{2} + 5 a + 1\bigr] \) |
${y}^2+\left(a^{3}+a^{2}-3a-1\right){x}{y}+{y}={x}^{3}+\left(a^{3}-a^{2}-3a+1\right){x}^{2}+\left(-2a^{3}-a^{2}+5a+2\right){x}-2a^{3}-2a^{2}+5a+1$ |
| 31.1-a5 |
31.1-a |
$6$ |
$8$ |
\(\Q(\zeta_{15})^+\) |
$4$ |
$[4, 0]$ |
31.1 |
\( 31 \) |
\( 31^{4} \) |
$4.60400$ |
$(a^3+2a^2-3a-3)$ |
0 |
$\Z/2\Z\oplus\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
✓ |
|
$2$ |
2Cs |
$1$ |
\( 2 \) |
$1$ |
$226.2402485$ |
0.843147624 |
\( -\frac{2933497938285}{923521} a^{3} + \frac{9133676668039}{923521} a^{2} - \frac{6067822613957}{923521} a - \frac{1204128338708}{923521} \) |
\( \bigl[a^{3} + a^{2} - 3 a - 1\) , \( a^{3} - a^{2} - 3 a + 1\) , \( 1\) , \( -22 a^{3} - 21 a^{2} + 60 a + 12\) , \( -77 a^{3} - 67 a^{2} + 195 a + 43\bigr] \) |
${y}^2+\left(a^{3}+a^{2}-3a-1\right){x}{y}+{y}={x}^{3}+\left(a^{3}-a^{2}-3a+1\right){x}^{2}+\left(-22a^{3}-21a^{2}+60a+12\right){x}-77a^{3}-67a^{2}+195a+43$ |
| 31.1-a6 |
31.1-a |
$6$ |
$8$ |
\(\Q(\zeta_{15})^+\) |
$4$ |
$[4, 0]$ |
31.1 |
\( 31 \) |
\( 31^{2} \) |
$4.60400$ |
$(a^3+2a^2-3a-3)$ |
0 |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
✓ |
|
$2$ |
2B |
$4$ |
\( 2 \) |
$1$ |
$14.14001553$ |
0.843147624 |
\( -\frac{236284316384699073}{961} a^{3} + \frac{698632890478410244}{961} a^{2} - \frac{421506652954098940}{961} a - \frac{120811375486877791}{961} \) |
\( \bigl[a^{3} + a^{2} - 3 a - 1\) , \( a^{3} - a^{2} - 3 a + 1\) , \( 1\) , \( -327 a^{3} - 341 a^{2} + 895 a + 197\) , \( -4716 a^{3} - 4369 a^{2} + 12267 a + 2711\bigr] \) |
${y}^2+\left(a^{3}+a^{2}-3a-1\right){x}{y}+{y}={x}^{3}+\left(a^{3}-a^{2}-3a+1\right){x}^{2}+\left(-327a^{3}-341a^{2}+895a+197\right){x}-4716a^{3}-4369a^{2}+12267a+2711$ |
| 31.1-b1 |
31.1-b |
$6$ |
$8$ |
\(\Q(\zeta_{15})^+\) |
$4$ |
$[4, 0]$ |
31.1 |
\( 31 \) |
\( 31^{4} \) |
$4.60400$ |
$(a^3+2a^2-3a-3)$ |
0 |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
✓ |
|
$2$ |
2B |
$16$ |
\( 2 \) |
$1$ |
$2.959428063$ |
0.705864781 |
\( \frac{13262138608154212980818020352}{923521} a^{3} - \frac{16034680544860826249617094257}{923521} a^{2} - \frac{49696393399932989894285277456}{923521} a + \frac{63437929696698697519404008684}{923521} \) |
\( \bigl[a^{2} - 2\) , \( -a^{2} + 1\) , \( 0\) , \( -80 a^{3} + 335 a^{2} + 315 a - 1284\) , \( -2177 a^{3} + 4753 a^{2} + 8378 a - 18117\bigr] \) |
${y}^2+\left(a^{2}-2\right){x}{y}={x}^{3}+\left(-a^{2}+1\right){x}^{2}+\left(-80a^{3}+335a^{2}+315a-1284\right){x}-2177a^{3}+4753a^{2}+8378a-18117$ |
| 31.1-b2 |
31.1-b |
$6$ |
$8$ |
\(\Q(\zeta_{15})^+\) |
$4$ |
$[4, 0]$ |
31.1 |
\( 31 \) |
\( 31^{8} \) |
$4.60400$ |
$(a^3+2a^2-3a-3)$ |
0 |
$\Z/2\Z\oplus\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
✓ |
|
$2$ |
2Cs |
$4$ |
\( 2 \) |
$1$ |
$47.35084901$ |
0.705864781 |
\( \frac{43561848213205037510145}{852891037441} a^{3} - \frac{52668771245192606365444}{852891037441} a^{2} - \frac{163236628849912597561348}{852891037441} a + \frac{208373205080817133396719}{852891037441} \) |
\( \bigl[a^{2} - 2\) , \( -a^{2} + 1\) , \( 0\) , \( -5 a^{3} + 20 a^{2} + 20 a - 79\) , \( -42 a^{3} + 85 a^{2} + 161 a - 317\bigr] \) |
${y}^2+\left(a^{2}-2\right){x}{y}={x}^{3}+\left(-a^{2}+1\right){x}^{2}+\left(-5a^{3}+20a^{2}+20a-79\right){x}-42a^{3}+85a^{2}+161a-317$ |
| 31.1-b3 |
31.1-b |
$6$ |
$8$ |
\(\Q(\zeta_{15})^+\) |
$4$ |
$[4, 0]$ |
31.1 |
\( 31 \) |
\( 31^{16} \) |
$4.60400$ |
$(a^3+2a^2-3a-3)$ |
0 |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
✓ |
|
$2$ |
2B |
$16$ |
\( 2 \) |
$1$ |
$2.959428063$ |
0.705864781 |
\( -\frac{69643673441152672038181763072}{727423121747185263828481} a^{3} + \frac{84890779633537182060967675121}{727423121747185263828481} a^{2} + \frac{261357927431140745378290491664}{727423121747185263828481} a - \frac{334879646814468933111035546908}{727423121747185263828481} \) |
\( \bigl[a^{2} - 2\) , \( -a^{2} + 1\) , \( 0\) , \( -10 a^{3} + 25 a^{2} + 45 a - 74\) , \( 9 a^{3} + 101 a^{2} - 28 a - 357\bigr] \) |
${y}^2+\left(a^{2}-2\right){x}{y}={x}^{3}+\left(-a^{2}+1\right){x}^{2}+\left(-10a^{3}+25a^{2}+45a-74\right){x}+9a^{3}+101a^{2}-28a-357$ |
| 31.1-b4 |
31.1-b |
$6$ |
$8$ |
\(\Q(\zeta_{15})^+\) |
$4$ |
$[4, 0]$ |
31.1 |
\( 31 \) |
\( 31^{2} \) |
$4.60400$ |
$(a^3+2a^2-3a-3)$ |
0 |
$\Z/8\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
✓ |
|
$2$ |
2B |
$1$ |
\( 2 \) |
$1$ |
$757.6135842$ |
0.705864781 |
\( -\frac{236284316384699073}{961} a^{3} + \frac{698632890478410244}{961} a^{2} - \frac{421506652954098940}{961} a - \frac{120811375486877791}{961} \) |
\( \bigl[a^{2} - 2\) , \( -a^{2} + 1\) , \( 0\) , \( 5 a^{3} - 20 a^{2} - 20 a - 9\) , \( -4 a^{3} + 99 a^{2} + 23 a - 5\bigr] \) |
${y}^2+\left(a^{2}-2\right){x}{y}={x}^{3}+\left(-a^{2}+1\right){x}^{2}+\left(5a^{3}-20a^{2}-20a-9\right){x}-4a^{3}+99a^{2}+23a-5$ |
| 31.1-b5 |
31.1-b |
$6$ |
$8$ |
\(\Q(\zeta_{15})^+\) |
$4$ |
$[4, 0]$ |
31.1 |
\( 31 \) |
\( 31^{4} \) |
$4.60400$ |
$(a^3+2a^2-3a-3)$ |
0 |
$\Z/2\Z\oplus\Z/4\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
✓ |
|
$2$ |
2Cs |
$1$ |
\( 2 \) |
$1$ |
$757.6135842$ |
0.705864781 |
\( -\frac{2933497938285}{923521} a^{3} + \frac{9133676668039}{923521} a^{2} - \frac{6067822613957}{923521} a - \frac{1204128338708}{923521} \) |
\( \bigl[a^{2} - 2\) , \( -a^{2} + 1\) , \( 0\) , \( -4\) , \( -a^{3} + 4 a^{2} + 4 a - 7\bigr] \) |
${y}^2+\left(a^{2}-2\right){x}{y}={x}^{3}+\left(-a^{2}+1\right){x}^{2}-4{x}-a^{3}+4a^{2}+4a-7$ |
| 31.1-b6 |
31.1-b |
$6$ |
$8$ |
\(\Q(\zeta_{15})^+\) |
$4$ |
$[4, 0]$ |
31.1 |
\( 31 \) |
\( 31^{2} \) |
$4.60400$ |
$(a^3+2a^2-3a-3)$ |
0 |
$\Z/8\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
✓ |
|
$2$ |
2B |
$1$ |
\( 2 \) |
$1$ |
$757.6135842$ |
0.705864781 |
\( -\frac{119292}{961} a^{3} - \frac{1134908}{961} a^{2} + \frac{2242557}{961} a + \frac{309574}{961} \) |
\( \bigl[a^{2} - 2\) , \( -a^{2} + 1\) , \( 0\) , \( 1\) , \( 0\bigr] \) |
${y}^2+\left(a^{2}-2\right){x}{y}={x}^{3}+\left(-a^{2}+1\right){x}^{2}+{x}$ |
*The rank, regulator and analytic order of Ш are
not known for all curves in the database; curves for which these are
unknown will not appear in searches specifying one of these
quantities.