Label |
Class |
Class size |
Class degree |
Base field |
Field degree |
Field signature |
Conductor |
Conductor norm |
Discriminant norm |
Root analytic conductor |
Bad primes |
Rank |
Torsion |
CM |
CM |
Sato-Tate |
$\Q$-curve |
Base change |
Semistable |
Potentially good |
Nonmax $\ell$ |
mod-$\ell$ images |
$Ш_{\textrm{an}}$ |
Tamagawa |
Regulator |
Period |
Leading coeff |
j-invariant |
Weierstrass coefficients |
Weierstrass equation |
25.1-a1 |
25.1-a |
$8$ |
$30$ |
\(\Q(\zeta_{15})^+\) |
$4$ |
$[4, 0]$ |
25.1 |
\( 5^{2} \) |
\( 5^{6} \) |
$4.48185$ |
$(-a-1)$ |
0 |
$\Z/2\Z$ |
$\textsf{potential}$ |
$-15$ |
$N(\mathrm{U}(1))$ |
✓ |
|
|
✓ |
$5$ |
5B.1.4[2] |
$1$ |
\( 2 \) |
$1$ |
$49.92252905$ |
0.744201123 |
\( -85995 a^{3} + 257985 a - 138510 \) |
\( \bigl[a^{2} + a - 2\) , \( -a^{3} - a^{2} + 4 a + 2\) , \( a^{3} - 2 a + 1\) , \( -5 a^{3} - 4 a^{2} + 13 a + 6\) , \( -7 a^{3} - 6 a^{2} + 19 a + 4\bigr] \) |
${y}^2+\left(a^{2}+a-2\right){x}{y}+\left(a^{3}-2a+1\right){y}={x}^{3}+\left(-a^{3}-a^{2}+4a+2\right){x}^{2}+\left(-5a^{3}-4a^{2}+13a+6\right){x}-7a^{3}-6a^{2}+19a+4$ |
25.1-a2 |
25.1-a |
$8$ |
$30$ |
\(\Q(\zeta_{15})^+\) |
$4$ |
$[4, 0]$ |
25.1 |
\( 5^{2} \) |
\( 5^{6} \) |
$4.48185$ |
$(-a-1)$ |
0 |
$\Z/2\Z$ |
$\textsf{potential}$ |
$-60$ |
$N(\mathrm{U}(1))$ |
✓ |
|
|
✓ |
$5$ |
5B.1.4[2] |
$1$ |
\( 2 \) |
$1$ |
$49.92252905$ |
0.744201123 |
\( 16554983445 a^{3} - 49664950335 a + 26786530035 \) |
\( \bigl[a^{2} + a - 2\) , \( -a^{3} - a^{2} + 4 a + 2\) , \( a^{3} - 2 a + 1\) , \( -45 a^{3} - 39 a^{2} + 113 a + 26\) , \( -258 a^{3} - 214 a^{2} + 641 a + 138\bigr] \) |
${y}^2+\left(a^{2}+a-2\right){x}{y}+\left(a^{3}-2a+1\right){y}={x}^{3}+\left(-a^{3}-a^{2}+4a+2\right){x}^{2}+\left(-45a^{3}-39a^{2}+113a+26\right){x}-258a^{3}-214a^{2}+641a+138$ |
25.1-a3 |
25.1-a |
$8$ |
$30$ |
\(\Q(\zeta_{15})^+\) |
$4$ |
$[4, 0]$ |
25.1 |
\( 5^{2} \) |
\( 5^{6} \) |
$4.48185$ |
$(-a-1)$ |
0 |
$\Z/10\Z$ |
$\textsf{potential}$ |
$-15$ |
$N(\mathrm{U}(1))$ |
✓ |
|
|
✓ |
$5$ |
5B.1.1[2] |
$1$ |
\( 2 \) |
$1$ |
$1248.063226$ |
0.744201123 |
\( -85995 a^{3} + 257985 a - 138510 \) |
\( \bigl[a^{2} - 1\) , \( a - 1\) , \( a^{3} + a^{2} - 2 a - 1\) , \( -716912 a^{3} - 592951 a^{2} + 1784272 a + 392379\) , \( 454902270 a^{3} + 376245535 a^{2} - 1132174281 a - 248976264\bigr] \) |
${y}^2+\left(a^{2}-1\right){x}{y}+\left(a^{3}+a^{2}-2a-1\right){y}={x}^{3}+\left(a-1\right){x}^{2}+\left(-716912a^{3}-592951a^{2}+1784272a+392379\right){x}+454902270a^{3}+376245535a^{2}-1132174281a-248976264$ |
25.1-a4 |
25.1-a |
$8$ |
$30$ |
\(\Q(\zeta_{15})^+\) |
$4$ |
$[4, 0]$ |
25.1 |
\( 5^{2} \) |
\( 5^{6} \) |
$4.48185$ |
$(-a-1)$ |
0 |
$\Z/10\Z$ |
$\textsf{potential}$ |
$-60$ |
$N(\mathrm{U}(1))$ |
✓ |
|
|
✓ |
$5$ |
5B.1.1[2] |
$1$ |
\( 2 \) |
$1$ |
$1248.063226$ |
0.744201123 |
\( 16554983445 a^{3} - 49664950335 a + 26786530035 \) |
\( \bigl[a^{2} - 1\) , \( a - 1\) , \( a^{3} + a^{2} - 2 a - 1\) , \( -11484892 a^{3} - 9499051 a^{2} + 28583937 a + 6285889\) , \( 29062760688 a^{3} + 24037545339 a^{2} - 72332262037 a - 15906576101\bigr] \) |
${y}^2+\left(a^{2}-1\right){x}{y}+\left(a^{3}+a^{2}-2a-1\right){y}={x}^{3}+\left(a-1\right){x}^{2}+\left(-11484892a^{3}-9499051a^{2}+28583937a+6285889\right){x}+29062760688a^{3}+24037545339a^{2}-72332262037a-15906576101$ |
25.1-a5 |
25.1-a |
$8$ |
$30$ |
\(\Q(\zeta_{15})^+\) |
$4$ |
$[4, 0]$ |
25.1 |
\( 5^{2} \) |
\( 5^{6} \) |
$4.48185$ |
$(-a-1)$ |
0 |
$\Z/10\Z$ |
$\textsf{potential}$ |
$-15$ |
$N(\mathrm{U}(1))$ |
✓ |
|
|
✓ |
$5$ |
5B.1.1[2] |
$1$ |
\( 2 \) |
$1$ |
$1248.063226$ |
0.744201123 |
\( 85995 a^{3} - 257985 a - 52515 \) |
\( \bigl[a^{3} - 2 a\) , \( -a^{3} + a^{2} + 3 a - 3\) , \( a + 1\) , \( 5 a^{3} + 4 a^{2} - 15 a + 1\) , \( 14 a^{3} + 13 a^{2} - 36 a - 10\bigr] \) |
${y}^2+\left(a^{3}-2a\right){x}{y}+\left(a+1\right){y}={x}^{3}+\left(-a^{3}+a^{2}+3a-3\right){x}^{2}+\left(5a^{3}+4a^{2}-15a+1\right){x}+14a^{3}+13a^{2}-36a-10$ |
25.1-a6 |
25.1-a |
$8$ |
$30$ |
\(\Q(\zeta_{15})^+\) |
$4$ |
$[4, 0]$ |
25.1 |
\( 5^{2} \) |
\( 5^{6} \) |
$4.48185$ |
$(-a-1)$ |
0 |
$\Z/10\Z$ |
$\textsf{potential}$ |
$-60$ |
$N(\mathrm{U}(1))$ |
✓ |
|
|
✓ |
$5$ |
5B.1.1[2] |
$1$ |
\( 2 \) |
$1$ |
$1248.063226$ |
0.744201123 |
\( -16554983445 a^{3} + 49664950335 a + 10231546590 \) |
\( \bigl[a^{3} - 2 a\) , \( -a^{3} + a^{2} + 3 a - 3\) , \( a + 1\) , \( -35 a^{3} - 31 a^{2} + 85 a + 21\) , \( 110 a^{3} + 91 a^{2} - 273 a - 59\bigr] \) |
${y}^2+\left(a^{3}-2a\right){x}{y}+\left(a+1\right){y}={x}^{3}+\left(-a^{3}+a^{2}+3a-3\right){x}^{2}+\left(-35a^{3}-31a^{2}+85a+21\right){x}+110a^{3}+91a^{2}-273a-59$ |
25.1-a7 |
25.1-a |
$8$ |
$30$ |
\(\Q(\zeta_{15})^+\) |
$4$ |
$[4, 0]$ |
25.1 |
\( 5^{2} \) |
\( 5^{6} \) |
$4.48185$ |
$(-a-1)$ |
0 |
$\Z/2\Z$ |
$\textsf{potential}$ |
$-15$ |
$N(\mathrm{U}(1))$ |
✓ |
|
|
✓ |
$5$ |
5B.1.4[2] |
$1$ |
\( 2 \) |
$1$ |
$49.92252905$ |
0.744201123 |
\( 85995 a^{3} - 257985 a - 52515 \) |
\( \bigl[a^{3} - 2 a + 1\) , \( a^{3} + a^{2} - 4 a - 3\) , \( a^{2} + a - 1\) , \( 29593 a^{3} + 24472 a^{2} - 73662 a - 16197\) , \( -4979614 a^{3} - 4118597 a^{2} + 12393403 a + 2725431\bigr] \) |
${y}^2+\left(a^{3}-2a+1\right){x}{y}+\left(a^{2}+a-1\right){y}={x}^{3}+\left(a^{3}+a^{2}-4a-3\right){x}^{2}+\left(29593a^{3}+24472a^{2}-73662a-16197\right){x}-4979614a^{3}-4118597a^{2}+12393403a+2725431$ |
25.1-a8 |
25.1-a |
$8$ |
$30$ |
\(\Q(\zeta_{15})^+\) |
$4$ |
$[4, 0]$ |
25.1 |
\( 5^{2} \) |
\( 5^{6} \) |
$4.48185$ |
$(-a-1)$ |
0 |
$\Z/2\Z$ |
$\textsf{potential}$ |
$-60$ |
$N(\mathrm{U}(1))$ |
✓ |
|
|
✓ |
$5$ |
5B.1.4[2] |
$1$ |
\( 2 \) |
$1$ |
$49.92252905$ |
0.744201123 |
\( -16554983445 a^{3} + 49664950335 a + 10231546590 \) |
\( \bigl[a^{3} - 2 a + 1\) , \( a^{3} + a^{2} - 4 a - 3\) , \( a^{2} + a - 1\) , \( -199462 a^{3} - 165053 a^{2} + 496253 a + 109138\) , \( -50977357 a^{3} - 42163431 a^{2} + 126872829 a + 27900618\bigr] \) |
${y}^2+\left(a^{3}-2a+1\right){x}{y}+\left(a^{2}+a-1\right){y}={x}^{3}+\left(a^{3}+a^{2}-4a-3\right){x}^{2}+\left(-199462a^{3}-165053a^{2}+496253a+109138\right){x}-50977357a^{3}-42163431a^{2}+126872829a+27900618$ |
25.1-b1 |
25.1-b |
$6$ |
$75$ |
\(\Q(\zeta_{15})^+\) |
$4$ |
$[4, 0]$ |
25.1 |
\( 5^{2} \) |
\( 5^{10} \) |
$4.48185$ |
$(a^3-4a+2)$ |
0 |
$\Z/5\Z$ |
$\textsf{potential}$ |
$-75$ |
$N(\mathrm{U}(1))$ |
✓ |
|
|
✓ |
$5$ |
5Cs.1.1[2] |
$1$ |
\( 1 \) |
$1$ |
$603.3662684$ |
0.719556262 |
\( -292658282496 a^{3} + 877974847488 a - 473531056128 \) |
\( \bigl[0\) , \( a^{3} + a^{2} - 4 a\) , \( a^{3} + a^{2} - 3 a - 1\) , \( -10 a^{3} + 51 a^{2} + 49 a - 200\) , \( 92 a^{3} - 272 a^{2} - 375 a + 1030\bigr] \) |
${y}^2+\left(a^{3}+a^{2}-3a-1\right){y}={x}^3+\left(a^{3}+a^{2}-4a\right){x}^2+\left(-10a^{3}+51a^{2}+49a-200\right){x}+92a^{3}-272a^{2}-375a+1030$ |
25.1-b2 |
25.1-b |
$6$ |
$75$ |
\(\Q(\zeta_{15})^+\) |
$4$ |
$[4, 0]$ |
25.1 |
\( 5^{2} \) |
\( 5^{10} \) |
$4.48185$ |
$(a^3-4a+2)$ |
0 |
$\mathsf{trivial}$ |
$\textsf{potential}$ |
$-75$ |
$N(\mathrm{U}(1))$ |
✓ |
|
|
✓ |
$5$ |
5Cs.1.1[2] |
$25$ |
\( 1 \) |
$1$ |
$0.965386029$ |
0.719556262 |
\( -292658282496 a^{3} + 877974847488 a - 473531056128 \) |
\( \bigl[0\) , \( a^{3} - 2 a + 1\) , \( a^{3} - 2 a + 2\) , \( -19 a^{3} - 9 a^{2} + 97 a - 70\) , \( -79 a^{3} - 44 a^{2} + 416 a - 291\bigr] \) |
${y}^2+\left(a^{3}-2a+2\right){y}={x}^3+\left(a^{3}-2a+1\right){x}^2+\left(-19a^{3}-9a^{2}+97a-70\right){x}-79a^{3}-44a^{2}+416a-291$ |
25.1-b3 |
25.1-b |
$6$ |
$75$ |
\(\Q(\zeta_{15})^+\) |
$4$ |
$[4, 0]$ |
25.1 |
\( 5^{2} \) |
\( 5^{10} \) |
$4.48185$ |
$(a^3-4a+2)$ |
0 |
$\Z/5\Z$ |
$\textsf{potential}$ |
$-75$ |
$N(\mathrm{U}(1))$ |
✓ |
|
|
✓ |
$5$ |
5Cs.1.1[2] |
$1$ |
\( 1 \) |
$1$ |
$603.3662684$ |
0.719556262 |
\( 292658282496 a^{3} - 877974847488 a - 180872773632 \) |
\( \bigl[0\) , \( a^{2} + a - 1\) , \( a^{3} - 2 a + 2\) , \( -9 a^{3} - 19 a^{2} + 78 a - 50\) , \( 5 a^{3} + 98 a^{2} - 287 a + 196\bigr] \) |
${y}^2+\left(a^{3}-2a+2\right){y}={x}^3+\left(a^{2}+a-1\right){x}^2+\left(-9a^{3}-19a^{2}+78a-50\right){x}+5a^{3}+98a^{2}-287a+196$ |
25.1-b4 |
25.1-b |
$6$ |
$75$ |
\(\Q(\zeta_{15})^+\) |
$4$ |
$[4, 0]$ |
25.1 |
\( 5^{2} \) |
\( 5^{10} \) |
$4.48185$ |
$(a^3-4a+2)$ |
0 |
$\mathsf{trivial}$ |
$\textsf{potential}$ |
$-75$ |
$N(\mathrm{U}(1))$ |
✓ |
|
|
✓ |
$5$ |
5Cs.1.1[2] |
$25$ |
\( 1 \) |
$1$ |
$0.965386029$ |
0.719556262 |
\( 292658282496 a^{3} - 877974847488 a - 180872773632 \) |
\( \bigl[0\) , \( a^{3} - a^{2} - 3 a + 2\) , \( a^{2} - 1\) , \( -20 a^{3} - 40 a^{2} + 49 a + 12\) , \( -161 a^{3} - 190 a^{2} + 410 a + 90\bigr] \) |
${y}^2+\left(a^{2}-1\right){y}={x}^3+\left(a^{3}-a^{2}-3a+2\right){x}^2+\left(-20a^{3}-40a^{2}+49a+12\right){x}-161a^{3}-190a^{2}+410a+90$ |
25.1-b5 |
25.1-b |
$6$ |
$75$ |
\(\Q(\zeta_{15})^+\) |
$4$ |
$[4, 0]$ |
25.1 |
\( 5^{2} \) |
\( 5^{2} \) |
$4.48185$ |
$(a^3-4a+2)$ |
0 |
$\Z/5\Z$ |
$\textsf{potential}$ |
$-3$ |
$N(\mathrm{U}(1))$ |
✓ |
|
|
✓ |
$5$ |
5Cs.1.1[2] |
$1$ |
\( 1 \) |
$1$ |
$603.3662684$ |
0.719556262 |
\( 0 \) |
\( \bigl[0\) , \( a^{3} - a^{2} - 3 a + 2\) , \( a^{2} - 1\) , \( -a + 2\) , \( a^{3} - 2 a\bigr] \) |
${y}^2+\left(a^{2}-1\right){y}={x}^3+\left(a^{3}-a^{2}-3a+2\right){x}^2+\left(-a+2\right){x}+a^{3}-2a$ |
25.1-b6 |
25.1-b |
$6$ |
$75$ |
\(\Q(\zeta_{15})^+\) |
$4$ |
$[4, 0]$ |
25.1 |
\( 5^{2} \) |
\( 5^{2} \) |
$4.48185$ |
$(a^3-4a+2)$ |
0 |
$\Z/5\Z$ |
$\textsf{potential}$ |
$-3$ |
$N(\mathrm{U}(1))$ |
✓ |
|
|
✓ |
$5$ |
5Cs.1.1[2] |
$1$ |
\( 1 \) |
$1$ |
$603.3662684$ |
0.719556262 |
\( 0 \) |
\( \bigl[0\) , \( a^{3} - 2 a + 1\) , \( a^{3} - 2 a + 2\) , \( a^{3} + a^{2} - 3 a\) , \( -a^{3} + 2 a - 1\bigr] \) |
${y}^2+\left(a^{3}-2a+2\right){y}={x}^3+\left(a^{3}-2a+1\right){x}^2+\left(a^{3}+a^{2}-3a\right){x}-a^{3}+2a-1$ |
31.1-a1 |
31.1-a |
$6$ |
$8$ |
\(\Q(\zeta_{15})^+\) |
$4$ |
$[4, 0]$ |
31.1 |
\( 31 \) |
\( 31^{4} \) |
$4.60400$ |
$(a^3+2a^2-3a-3)$ |
0 |
$\Z/4\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
✓ |
|
$2$ |
2B |
$1$ |
\( 2 \) |
$1$ |
$226.2402485$ |
0.843147624 |
\( \frac{13262138608154212980818020352}{923521} a^{3} - \frac{16034680544860826249617094257}{923521} a^{2} - \frac{49696393399932989894285277456}{923521} a + \frac{63437929696698697519404008684}{923521} \) |
\( \bigl[a^{3} + a^{2} - 3 a - 1\) , \( a^{3} - a^{2} - 3 a + 1\) , \( 1\) , \( -427 a^{3} - 156 a^{2} + 1210 a - 328\) , \( 5301 a^{3} + 2573 a^{2} - 14446 a + 2048\bigr] \) |
${y}^2+\left(a^{3}+a^{2}-3a-1\right){x}{y}+{y}={x}^{3}+\left(a^{3}-a^{2}-3a+1\right){x}^{2}+\left(-427a^{3}-156a^{2}+1210a-328\right){x}+5301a^{3}+2573a^{2}-14446a+2048$ |
31.1-a2 |
31.1-a |
$6$ |
$8$ |
\(\Q(\zeta_{15})^+\) |
$4$ |
$[4, 0]$ |
31.1 |
\( 31 \) |
\( 31^{16} \) |
$4.60400$ |
$(a^3+2a^2-3a-3)$ |
0 |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
✓ |
|
$2$ |
2B |
$4$ |
\( 2 \) |
$1$ |
$14.14001553$ |
0.843147624 |
\( -\frac{69643673441152672038181763072}{727423121747185263828481} a^{3} + \frac{84890779633537182060967675121}{727423121747185263828481} a^{2} + \frac{261357927431140745378290491664}{727423121747185263828481} a - \frac{334879646814468933111035546908}{727423121747185263828481} \) |
\( \bigl[a^{3} + a^{2} - 3 a - 1\) , \( a^{3} - a^{2} - 3 a + 1\) , \( 1\) , \( 113 a^{3} + 114 a^{2} - 280 a - 98\) , \( -a^{3} - 75 a^{2} + 44 a + 78\bigr] \) |
${y}^2+\left(a^{3}+a^{2}-3a-1\right){x}{y}+{y}={x}^{3}+\left(a^{3}-a^{2}-3a+1\right){x}^{2}+\left(113a^{3}+114a^{2}-280a-98\right){x}-a^{3}-75a^{2}+44a+78$ |
31.1-a3 |
31.1-a |
$6$ |
$8$ |
\(\Q(\zeta_{15})^+\) |
$4$ |
$[4, 0]$ |
31.1 |
\( 31 \) |
\( 31^{8} \) |
$4.60400$ |
$(a^3+2a^2-3a-3)$ |
0 |
$\Z/2\Z\oplus\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
✓ |
|
$2$ |
2Cs |
$1$ |
\( 2 \) |
$1$ |
$226.2402485$ |
0.843147624 |
\( \frac{43561848213205037510145}{852891037441} a^{3} - \frac{52668771245192606365444}{852891037441} a^{2} - \frac{163236628849912597561348}{852891037441} a + \frac{208373205080817133396719}{852891037441} \) |
\( \bigl[a^{3} + a^{2} - 3 a - 1\) , \( a^{3} - a^{2} - 3 a + 1\) , \( 1\) , \( -37 a^{3} - 21 a^{2} + 105 a - 13\) , \( 2 a^{3} - 25 a^{2} - 17 a + 63\bigr] \) |
${y}^2+\left(a^{3}+a^{2}-3a-1\right){x}{y}+{y}={x}^{3}+\left(a^{3}-a^{2}-3a+1\right){x}^{2}+\left(-37a^{3}-21a^{2}+105a-13\right){x}+2a^{3}-25a^{2}-17a+63$ |
31.1-a4 |
31.1-a |
$6$ |
$8$ |
\(\Q(\zeta_{15})^+\) |
$4$ |
$[4, 0]$ |
31.1 |
\( 31 \) |
\( 31^{2} \) |
$4.60400$ |
$(a^3+2a^2-3a-3)$ |
0 |
$\Z/4\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
✓ |
|
$2$ |
2B |
$1$ |
\( 2 \) |
$1$ |
$226.2402485$ |
0.843147624 |
\( -\frac{119292}{961} a^{3} - \frac{1134908}{961} a^{2} + \frac{2242557}{961} a + \frac{309574}{961} \) |
\( \bigl[a^{3} + a^{2} - 3 a - 1\) , \( a^{3} - a^{2} - 3 a + 1\) , \( 1\) , \( -2 a^{3} - a^{2} + 5 a + 2\) , \( -2 a^{3} - 2 a^{2} + 5 a + 1\bigr] \) |
${y}^2+\left(a^{3}+a^{2}-3a-1\right){x}{y}+{y}={x}^{3}+\left(a^{3}-a^{2}-3a+1\right){x}^{2}+\left(-2a^{3}-a^{2}+5a+2\right){x}-2a^{3}-2a^{2}+5a+1$ |
31.1-a5 |
31.1-a |
$6$ |
$8$ |
\(\Q(\zeta_{15})^+\) |
$4$ |
$[4, 0]$ |
31.1 |
\( 31 \) |
\( 31^{4} \) |
$4.60400$ |
$(a^3+2a^2-3a-3)$ |
0 |
$\Z/2\Z\oplus\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
✓ |
|
$2$ |
2Cs |
$1$ |
\( 2 \) |
$1$ |
$226.2402485$ |
0.843147624 |
\( -\frac{2933497938285}{923521} a^{3} + \frac{9133676668039}{923521} a^{2} - \frac{6067822613957}{923521} a - \frac{1204128338708}{923521} \) |
\( \bigl[a^{3} + a^{2} - 3 a - 1\) , \( a^{3} - a^{2} - 3 a + 1\) , \( 1\) , \( -22 a^{3} - 21 a^{2} + 60 a + 12\) , \( -77 a^{3} - 67 a^{2} + 195 a + 43\bigr] \) |
${y}^2+\left(a^{3}+a^{2}-3a-1\right){x}{y}+{y}={x}^{3}+\left(a^{3}-a^{2}-3a+1\right){x}^{2}+\left(-22a^{3}-21a^{2}+60a+12\right){x}-77a^{3}-67a^{2}+195a+43$ |
31.1-a6 |
31.1-a |
$6$ |
$8$ |
\(\Q(\zeta_{15})^+\) |
$4$ |
$[4, 0]$ |
31.1 |
\( 31 \) |
\( 31^{2} \) |
$4.60400$ |
$(a^3+2a^2-3a-3)$ |
0 |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
✓ |
|
$2$ |
2B |
$4$ |
\( 2 \) |
$1$ |
$14.14001553$ |
0.843147624 |
\( -\frac{236284316384699073}{961} a^{3} + \frac{698632890478410244}{961} a^{2} - \frac{421506652954098940}{961} a - \frac{120811375486877791}{961} \) |
\( \bigl[a^{3} + a^{2} - 3 a - 1\) , \( a^{3} - a^{2} - 3 a + 1\) , \( 1\) , \( -327 a^{3} - 341 a^{2} + 895 a + 197\) , \( -4716 a^{3} - 4369 a^{2} + 12267 a + 2711\bigr] \) |
${y}^2+\left(a^{3}+a^{2}-3a-1\right){x}{y}+{y}={x}^{3}+\left(a^{3}-a^{2}-3a+1\right){x}^{2}+\left(-327a^{3}-341a^{2}+895a+197\right){x}-4716a^{3}-4369a^{2}+12267a+2711$ |
31.1-b1 |
31.1-b |
$6$ |
$8$ |
\(\Q(\zeta_{15})^+\) |
$4$ |
$[4, 0]$ |
31.1 |
\( 31 \) |
\( 31^{4} \) |
$4.60400$ |
$(a^3+2a^2-3a-3)$ |
0 |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
✓ |
|
$2$ |
2B |
$16$ |
\( 2 \) |
$1$ |
$2.959428063$ |
0.705864781 |
\( \frac{13262138608154212980818020352}{923521} a^{3} - \frac{16034680544860826249617094257}{923521} a^{2} - \frac{49696393399932989894285277456}{923521} a + \frac{63437929696698697519404008684}{923521} \) |
\( \bigl[a^{2} - 2\) , \( -a^{2} + 1\) , \( 0\) , \( -80 a^{3} + 335 a^{2} + 315 a - 1284\) , \( -2177 a^{3} + 4753 a^{2} + 8378 a - 18117\bigr] \) |
${y}^2+\left(a^{2}-2\right){x}{y}={x}^{3}+\left(-a^{2}+1\right){x}^{2}+\left(-80a^{3}+335a^{2}+315a-1284\right){x}-2177a^{3}+4753a^{2}+8378a-18117$ |
31.1-b2 |
31.1-b |
$6$ |
$8$ |
\(\Q(\zeta_{15})^+\) |
$4$ |
$[4, 0]$ |
31.1 |
\( 31 \) |
\( 31^{8} \) |
$4.60400$ |
$(a^3+2a^2-3a-3)$ |
0 |
$\Z/2\Z\oplus\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
✓ |
|
$2$ |
2Cs |
$4$ |
\( 2 \) |
$1$ |
$47.35084901$ |
0.705864781 |
\( \frac{43561848213205037510145}{852891037441} a^{3} - \frac{52668771245192606365444}{852891037441} a^{2} - \frac{163236628849912597561348}{852891037441} a + \frac{208373205080817133396719}{852891037441} \) |
\( \bigl[a^{2} - 2\) , \( -a^{2} + 1\) , \( 0\) , \( -5 a^{3} + 20 a^{2} + 20 a - 79\) , \( -42 a^{3} + 85 a^{2} + 161 a - 317\bigr] \) |
${y}^2+\left(a^{2}-2\right){x}{y}={x}^{3}+\left(-a^{2}+1\right){x}^{2}+\left(-5a^{3}+20a^{2}+20a-79\right){x}-42a^{3}+85a^{2}+161a-317$ |
31.1-b3 |
31.1-b |
$6$ |
$8$ |
\(\Q(\zeta_{15})^+\) |
$4$ |
$[4, 0]$ |
31.1 |
\( 31 \) |
\( 31^{16} \) |
$4.60400$ |
$(a^3+2a^2-3a-3)$ |
0 |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
✓ |
|
$2$ |
2B |
$16$ |
\( 2 \) |
$1$ |
$2.959428063$ |
0.705864781 |
\( -\frac{69643673441152672038181763072}{727423121747185263828481} a^{3} + \frac{84890779633537182060967675121}{727423121747185263828481} a^{2} + \frac{261357927431140745378290491664}{727423121747185263828481} a - \frac{334879646814468933111035546908}{727423121747185263828481} \) |
\( \bigl[a^{2} - 2\) , \( -a^{2} + 1\) , \( 0\) , \( -10 a^{3} + 25 a^{2} + 45 a - 74\) , \( 9 a^{3} + 101 a^{2} - 28 a - 357\bigr] \) |
${y}^2+\left(a^{2}-2\right){x}{y}={x}^{3}+\left(-a^{2}+1\right){x}^{2}+\left(-10a^{3}+25a^{2}+45a-74\right){x}+9a^{3}+101a^{2}-28a-357$ |
31.1-b4 |
31.1-b |
$6$ |
$8$ |
\(\Q(\zeta_{15})^+\) |
$4$ |
$[4, 0]$ |
31.1 |
\( 31 \) |
\( 31^{2} \) |
$4.60400$ |
$(a^3+2a^2-3a-3)$ |
0 |
$\Z/8\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
✓ |
|
$2$ |
2B |
$1$ |
\( 2 \) |
$1$ |
$757.6135842$ |
0.705864781 |
\( -\frac{236284316384699073}{961} a^{3} + \frac{698632890478410244}{961} a^{2} - \frac{421506652954098940}{961} a - \frac{120811375486877791}{961} \) |
\( \bigl[a^{2} - 2\) , \( -a^{2} + 1\) , \( 0\) , \( 5 a^{3} - 20 a^{2} - 20 a - 9\) , \( -4 a^{3} + 99 a^{2} + 23 a - 5\bigr] \) |
${y}^2+\left(a^{2}-2\right){x}{y}={x}^{3}+\left(-a^{2}+1\right){x}^{2}+\left(5a^{3}-20a^{2}-20a-9\right){x}-4a^{3}+99a^{2}+23a-5$ |
31.1-b5 |
31.1-b |
$6$ |
$8$ |
\(\Q(\zeta_{15})^+\) |
$4$ |
$[4, 0]$ |
31.1 |
\( 31 \) |
\( 31^{4} \) |
$4.60400$ |
$(a^3+2a^2-3a-3)$ |
0 |
$\Z/2\Z\oplus\Z/4\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
✓ |
|
$2$ |
2Cs |
$1$ |
\( 2 \) |
$1$ |
$757.6135842$ |
0.705864781 |
\( -\frac{2933497938285}{923521} a^{3} + \frac{9133676668039}{923521} a^{2} - \frac{6067822613957}{923521} a - \frac{1204128338708}{923521} \) |
\( \bigl[a^{2} - 2\) , \( -a^{2} + 1\) , \( 0\) , \( -4\) , \( -a^{3} + 4 a^{2} + 4 a - 7\bigr] \) |
${y}^2+\left(a^{2}-2\right){x}{y}={x}^{3}+\left(-a^{2}+1\right){x}^{2}-4{x}-a^{3}+4a^{2}+4a-7$ |
31.1-b6 |
31.1-b |
$6$ |
$8$ |
\(\Q(\zeta_{15})^+\) |
$4$ |
$[4, 0]$ |
31.1 |
\( 31 \) |
\( 31^{2} \) |
$4.60400$ |
$(a^3+2a^2-3a-3)$ |
0 |
$\Z/8\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
✓ |
|
$2$ |
2B |
$1$ |
\( 2 \) |
$1$ |
$757.6135842$ |
0.705864781 |
\( -\frac{119292}{961} a^{3} - \frac{1134908}{961} a^{2} + \frac{2242557}{961} a + \frac{309574}{961} \) |
\( \bigl[a^{2} - 2\) , \( -a^{2} + 1\) , \( 0\) , \( 1\) , \( 0\bigr] \) |
${y}^2+\left(a^{2}-2\right){x}{y}={x}^{3}+\left(-a^{2}+1\right){x}^{2}+{x}$ |
31.2-a1 |
31.2-a |
$6$ |
$8$ |
\(\Q(\zeta_{15})^+\) |
$4$ |
$[4, 0]$ |
31.2 |
\( 31 \) |
\( 31^{2} \) |
$4.60400$ |
$(-a^3+5a-2)$ |
0 |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
✓ |
|
$2$ |
2B |
$4$ |
\( 2 \) |
$1$ |
$14.14001553$ |
0.843147624 |
\( \frac{934917206863109317}{961} a^{3} - \frac{1130359602108196159}{961} a^{2} - \frac{3503384511067738195}{961} a + \frac{4472090816549444332}{961} \) |
\( \bigl[a + 1\) , \( a^{3} - 3 a\) , \( a^{2} - 1\) , \( -15 a^{3} - 85 a^{2} + 385 a - 331\) , \( 187 a^{3} - 1626 a^{2} + 3723 a - 2518\bigr] \) |
${y}^2+\left(a+1\right){x}{y}+\left(a^{2}-1\right){y}={x}^{3}+\left(a^{3}-3a\right){x}^{2}+\left(-15a^{3}-85a^{2}+385a-331\right){x}+187a^{3}-1626a^{2}+3723a-2518$ |
31.2-a2 |
31.2-a |
$6$ |
$8$ |
\(\Q(\zeta_{15})^+\) |
$4$ |
$[4, 0]$ |
31.2 |
\( 31 \) |
\( 31^{4} \) |
$4.60400$ |
$(-a^3+5a-2)$ |
0 |
$\Z/4\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
✓ |
|
$2$ |
2B |
$1$ |
\( 2 \) |
$1$ |
$226.2402485$ |
0.843147624 |
\( -\frac{29296819153015039230435114609}{923521} a^{3} - \frac{9909977575470350951831216400}{923521} a^{2} + \frac{103925138003905943940922438084}{923521} a + \frac{21891704604902707693397138361}{923521} \) |
\( \bigl[a + 1\) , \( a^{3} - 3 a\) , \( a^{2} - 1\) , \( 270 a^{3} - 70 a^{2} - 655 a - 231\) , \( -2943 a^{3} + 1542 a^{2} + 6186 a + 1507\bigr] \) |
${y}^2+\left(a+1\right){x}{y}+\left(a^{2}-1\right){y}={x}^{3}+\left(a^{3}-3a\right){x}^{2}+\left(270a^{3}-70a^{2}-655a-231\right){x}-2943a^{3}+1542a^{2}+6186a+1507$ |
31.2-a3 |
31.2-a |
$6$ |
$8$ |
\(\Q(\zeta_{15})^+\) |
$4$ |
$[4, 0]$ |
31.2 |
\( 31 \) |
\( 31^{8} \) |
$4.60400$ |
$(-a^3+5a-2)$ |
0 |
$\Z/2\Z\oplus\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
✓ |
|
$2$ |
2Cs |
$1$ |
\( 2 \) |
$1$ |
$226.2402485$ |
0.843147624 |
\( -\frac{96230619458397643875589}{852891037441} a^{3} - \frac{32551084210297485030913}{852891037441} a^{2} + \frac{341360629620385537992211}{852891037441} a + \frac{71907211552629246852068}{852891037441} \) |
\( \bigl[a + 1\) , \( a^{3} - 3 a\) , \( a^{2} - 1\) , \( 15 a^{3} - 5 a^{2} - 25 a - 31\) , \( -47 a^{3} + 4 a^{2} + 161 a - 22\bigr] \) |
${y}^2+\left(a+1\right){x}{y}+\left(a^{2}-1\right){y}={x}^{3}+\left(a^{3}-3a\right){x}^{2}+\left(15a^{3}-5a^{2}-25a-31\right){x}-47a^{3}+4a^{2}+161a-22$ |
31.2-a4 |
31.2-a |
$6$ |
$8$ |
\(\Q(\zeta_{15})^+\) |
$4$ |
$[4, 0]$ |
31.2 |
\( 31 \) |
\( 31^{4} \) |
$4.60400$ |
$(-a^3+5a-2)$ |
0 |
$\Z/2\Z\oplus\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
✓ |
|
$2$ |
2Cs |
$1$ |
\( 2 \) |
$1$ |
$226.2402485$ |
0.843147624 |
\( \frac{12067174606324}{923521} a^{3} - \frac{14868316428812}{923521} a^{2} - \frac{45335200487011}{923521} a + \frac{58867032461318}{923521} \) |
\( \bigl[a + 1\) , \( a^{3} - 3 a\) , \( a^{2} - 1\) , \( -5 a^{2} + 20 a - 21\) , \( -21 a^{2} + 62 a - 44\bigr] \) |
${y}^2+\left(a+1\right){x}{y}+\left(a^{2}-1\right){y}={x}^{3}+\left(a^{3}-3a\right){x}^{2}+\left(-5a^{2}+20a-21\right){x}-21a^{2}+62a-44$ |
31.2-a5 |
31.2-a |
$6$ |
$8$ |
\(\Q(\zeta_{15})^+\) |
$4$ |
$[4, 0]$ |
31.2 |
\( 31 \) |
\( 31^{2} \) |
$4.60400$ |
$(-a^3+5a-2)$ |
0 |
$\Z/4\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
✓ |
|
$2$ |
2B |
$1$ |
\( 2 \) |
$1$ |
$226.2402485$ |
0.843147624 |
\( -\frac{1015616}{961} a^{3} + \frac{1884681}{961} a^{2} + \frac{4181756}{961} a - \frac{6745220}{961} \) |
\( \bigl[a + 1\) , \( a^{3} - 3 a\) , \( a^{2} - 1\) , \( -1\) , \( -a^{2} + 2 a - 1\bigr] \) |
${y}^2+\left(a+1\right){x}{y}+\left(a^{2}-1\right){y}={x}^{3}+\left(a^{3}-3a\right){x}^{2}-{x}-a^{2}+2a-1$ |
31.2-a6 |
31.2-a |
$6$ |
$8$ |
\(\Q(\zeta_{15})^+\) |
$4$ |
$[4, 0]$ |
31.2 |
\( 31 \) |
\( 31^{16} \) |
$4.60400$ |
$(-a^3+5a-2)$ |
0 |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
✓ |
|
$2$ |
2B |
$4$ |
\( 2 \) |
$1$ |
$14.14001553$ |
0.843147624 |
\( \frac{154534453074689854099149438193}{727423121747185263828481} a^{3} + \frac{52426907107682729263745202448}{727423121747185263828481} a^{2} - \frac{548494138857606744358415989700}{727423121747185263828481} a - \frac{115417448688070173417441163369}{727423121747185263828481} \) |
\( \bigl[a + 1\) , \( a^{3} - 3 a\) , \( a^{2} - 1\) , \( 60 a^{2} - 115 a + 9\) , \( -59 a^{3} - 14 a^{2} + 312 a - 163\bigr] \) |
${y}^2+\left(a+1\right){x}{y}+\left(a^{2}-1\right){y}={x}^{3}+\left(a^{3}-3a\right){x}^{2}+\left(60a^{2}-115a+9\right){x}-59a^{3}-14a^{2}+312a-163$ |
31.2-b1 |
31.2-b |
$6$ |
$8$ |
\(\Q(\zeta_{15})^+\) |
$4$ |
$[4, 0]$ |
31.2 |
\( 31 \) |
\( 31^{4} \) |
$4.60400$ |
$(-a^3+5a-2)$ |
0 |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
✓ |
|
$2$ |
2B |
$16$ |
\( 2 \) |
$1$ |
$2.959428063$ |
0.705864781 |
\( -\frac{29296819153015039230435114609}{923521} a^{3} - \frac{9909977575470350951831216400}{923521} a^{2} + \frac{103925138003905943940922438084}{923521} a + \frac{21891704604902707693397138361}{923521} \) |
\( \bigl[a^{3} - 2 a + 1\) , \( a^{3} - a^{2} - 2 a + 2\) , \( a^{2} - 1\) , \( 416 a^{3} + 76 a^{2} - 1585 a - 348\) , \( 6396 a^{3} + 1587 a^{2} - 23865 a - 5050\bigr] \) |
${y}^2+\left(a^{3}-2a+1\right){x}{y}+\left(a^{2}-1\right){y}={x}^{3}+\left(a^{3}-a^{2}-2a+2\right){x}^{2}+\left(416a^{3}+76a^{2}-1585a-348\right){x}+6396a^{3}+1587a^{2}-23865a-5050$ |
31.2-b2 |
31.2-b |
$6$ |
$8$ |
\(\Q(\zeta_{15})^+\) |
$4$ |
$[4, 0]$ |
31.2 |
\( 31 \) |
\( 31^{2} \) |
$4.60400$ |
$(-a^3+5a-2)$ |
0 |
$\Z/8\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
✓ |
|
$2$ |
2B |
$1$ |
\( 2 \) |
$1$ |
$757.6135842$ |
0.705864781 |
\( \frac{934917206863109317}{961} a^{3} - \frac{1130359602108196159}{961} a^{2} - \frac{3503384511067738195}{961} a + \frac{4472090816549444332}{961} \) |
\( \bigl[a^{3} - 2 a + 1\) , \( a^{3} - a^{2} - 2 a + 2\) , \( a^{2} - 1\) , \( -24 a^{3} - 4 a^{2} + 90 a - 63\) , \( 49 a^{3} + 26 a^{2} - 250 a + 169\bigr] \) |
${y}^2+\left(a^{3}-2a+1\right){x}{y}+\left(a^{2}-1\right){y}={x}^{3}+\left(a^{3}-a^{2}-2a+2\right){x}^{2}+\left(-24a^{3}-4a^{2}+90a-63\right){x}+49a^{3}+26a^{2}-250a+169$ |
31.2-b3 |
31.2-b |
$6$ |
$8$ |
\(\Q(\zeta_{15})^+\) |
$4$ |
$[4, 0]$ |
31.2 |
\( 31 \) |
\( 31^{8} \) |
$4.60400$ |
$(-a^3+5a-2)$ |
0 |
$\Z/2\Z\oplus\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
✓ |
|
$2$ |
2Cs |
$4$ |
\( 2 \) |
$1$ |
$47.35084901$ |
0.705864781 |
\( -\frac{96230619458397643875589}{852891037441} a^{3} - \frac{32551084210297485030913}{852891037441} a^{2} + \frac{341360629620385537992211}{852891037441} a + \frac{71907211552629246852068}{852891037441} \) |
\( \bigl[a^{3} - 2 a + 1\) , \( a^{3} - a^{2} - 2 a + 2\) , \( a^{2} - 1\) , \( 26 a^{3} + 6 a^{2} - 100 a - 23\) , \( 93 a^{3} + 20 a^{2} - 358 a - 75\bigr] \) |
${y}^2+\left(a^{3}-2a+1\right){x}{y}+\left(a^{2}-1\right){y}={x}^{3}+\left(a^{3}-a^{2}-2a+2\right){x}^{2}+\left(26a^{3}+6a^{2}-100a-23\right){x}+93a^{3}+20a^{2}-358a-75$ |
31.2-b4 |
31.2-b |
$6$ |
$8$ |
\(\Q(\zeta_{15})^+\) |
$4$ |
$[4, 0]$ |
31.2 |
\( 31 \) |
\( 31^{16} \) |
$4.60400$ |
$(-a^3+5a-2)$ |
0 |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
✓ |
|
$2$ |
2B |
$16$ |
\( 2 \) |
$1$ |
$2.959428063$ |
0.705864781 |
\( \frac{154534453074689854099149438193}{727423121747185263828481} a^{3} + \frac{52426907107682729263745202448}{727423121747185263828481} a^{2} - \frac{548494138857606744358415989700}{727423121747185263828481} a - \frac{115417448688070173417441163369}{727423121747185263828481} \) |
\( \bigl[a^{3} - 2 a + 1\) , \( a^{3} - a^{2} - 2 a + 2\) , \( a^{2} - 1\) , \( 36 a^{3} + 16 a^{2} - 135 a - 18\) , \( 78 a^{3} - 11 a^{2} - 319 a - 36\bigr] \) |
${y}^2+\left(a^{3}-2a+1\right){x}{y}+\left(a^{2}-1\right){y}={x}^{3}+\left(a^{3}-a^{2}-2a+2\right){x}^{2}+\left(36a^{3}+16a^{2}-135a-18\right){x}+78a^{3}-11a^{2}-319a-36$ |
31.2-b5 |
31.2-b |
$6$ |
$8$ |
\(\Q(\zeta_{15})^+\) |
$4$ |
$[4, 0]$ |
31.2 |
\( 31 \) |
\( 31^{4} \) |
$4.60400$ |
$(-a^3+5a-2)$ |
0 |
$\Z/2\Z\oplus\Z/4\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
✓ |
|
$2$ |
2Cs |
$1$ |
\( 2 \) |
$1$ |
$757.6135842$ |
0.705864781 |
\( \frac{12067174606324}{923521} a^{3} - \frac{14868316428812}{923521} a^{2} - \frac{45335200487011}{923521} a + \frac{58867032461318}{923521} \) |
\( \bigl[a^{3} - 2 a + 1\) , \( a^{3} - a^{2} - 2 a + 2\) , \( a^{2} - 1\) , \( a^{3} + a^{2} - 5 a - 3\) , \( a^{3} + a^{2} - 6 a - 1\bigr] \) |
${y}^2+\left(a^{3}-2a+1\right){x}{y}+\left(a^{2}-1\right){y}={x}^{3}+\left(a^{3}-a^{2}-2a+2\right){x}^{2}+\left(a^{3}+a^{2}-5a-3\right){x}+a^{3}+a^{2}-6a-1$ |
31.2-b6 |
31.2-b |
$6$ |
$8$ |
\(\Q(\zeta_{15})^+\) |
$4$ |
$[4, 0]$ |
31.2 |
\( 31 \) |
\( 31^{2} \) |
$4.60400$ |
$(-a^3+5a-2)$ |
0 |
$\Z/8\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
✓ |
|
$2$ |
2B |
$1$ |
\( 2 \) |
$1$ |
$757.6135842$ |
0.705864781 |
\( -\frac{1015616}{961} a^{3} + \frac{1884681}{961} a^{2} + \frac{4181756}{961} a - \frac{6745220}{961} \) |
\( \bigl[a^{3} - 2 a + 1\) , \( a^{3} - a^{2} - 2 a + 2\) , \( a^{2} - 1\) , \( a^{3} + a^{2} - 5 a + 2\) , \( a^{3} - 2 a\bigr] \) |
${y}^2+\left(a^{3}-2a+1\right){x}{y}+\left(a^{2}-1\right){y}={x}^{3}+\left(a^{3}-a^{2}-2a+2\right){x}^{2}+\left(a^{3}+a^{2}-5a+2\right){x}+a^{3}-2a$ |
31.3-a1 |
31.3-a |
$6$ |
$8$ |
\(\Q(\zeta_{15})^+\) |
$4$ |
$[4, 0]$ |
31.3 |
\( 31 \) |
\( 31^{4} \) |
$4.60400$ |
$(-2a^3-2a^2+6a+3)$ |
0 |
$\Z/4\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
✓ |
|
$2$ |
2B |
$1$ |
\( 2 \) |
$1$ |
$226.2402485$ |
0.843147624 |
\( -\frac{3352161032683862028986803952}{923521} a^{3} + \frac{9909977575470350951831216400}{923521} a^{2} - \frac{5978197446809240162656682401}{923521} a - \frac{1713525152117869864310632982}{923521} \) |
\( \bigl[a^{3} - 2 a\) , \( a^{3} - a^{2} - 3 a + 2\) , \( a^{3} + a^{2} - 3 a - 1\) , \( 495 a^{3} + 69 a^{2} - 1642 a - 353\) , \( -7129 a^{3} - 1543 a^{2} + 24030 a + 5034\bigr] \) |
${y}^2+\left(a^{3}-2a\right){x}{y}+\left(a^{3}+a^{2}-3a-1\right){y}={x}^{3}+\left(a^{3}-a^{2}-3a+2\right){x}^{2}+\left(495a^{3}+69a^{2}-1642a-353\right){x}-7129a^{3}-1543a^{2}+24030a+5034$ |
31.3-a2 |
31.3-a |
$6$ |
$8$ |
\(\Q(\zeta_{15})^+\) |
$4$ |
$[4, 0]$ |
31.3 |
\( 31 \) |
\( 31^{2} \) |
$4.60400$ |
$(-2a^3-2a^2+6a+3)$ |
0 |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
✓ |
|
$2$ |
2B |
$4$ |
\( 2 \) |
$1$ |
$14.14001553$ |
0.843147624 |
\( \frac{1366643918492895232}{961} a^{3} + \frac{1130359602108196159}{961} a^{2} - \frac{3401298865000275452}{961} a - \frac{747980482361750548}{961} \) |
\( \bigl[a^{3} - 2 a\) , \( a^{3} - a^{2} - 3 a + 2\) , \( a^{3} + a^{2} - 3 a - 1\) , \( 410 a^{3} + 84 a^{2} - 1572 a - 328\) , \( 6096 a^{3} + 1625 a^{2} - 22572 a - 4736\bigr] \) |
${y}^2+\left(a^{3}-2a\right){x}{y}+\left(a^{3}+a^{2}-3a-1\right){y}={x}^{3}+\left(a^{3}-a^{2}-3a+2\right){x}^{2}+\left(410a^{3}+84a^{2}-1572a-328\right){x}+6096a^{3}+1625a^{2}-22572a-4736$ |
31.3-a3 |
31.3-a |
$6$ |
$8$ |
\(\Q(\zeta_{15})^+\) |
$4$ |
$[4, 0]$ |
31.3 |
\( 31 \) |
\( 31^{8} \) |
$4.60400$ |
$(-2a^3-2a^2+6a+3)$ |
0 |
$\Z/2\Z\oplus\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
✓ |
|
$2$ |
2Cs |
$1$ |
\( 2 \) |
$1$ |
$226.2402485$ |
0.843147624 |
\( -\frac{11010764002907552479232}{852891037441} a^{3} + \frac{32551084210297485030913}{852891037441} a^{2} - \frac{19636479236469948927748}{852891037441} a - \frac{5628354043368086906140}{852891037441} \) |
\( \bigl[a^{3} - 2 a\) , \( a^{3} - a^{2} - 3 a + 2\) , \( a^{3} + a^{2} - 3 a - 1\) , \( 40 a^{3} + 4 a^{2} - 142 a - 28\) , \( -32 a^{3} - 5 a^{2} + 76 a + 16\bigr] \) |
${y}^2+\left(a^{3}-2a\right){x}{y}+\left(a^{3}+a^{2}-3a-1\right){y}={x}^{3}+\left(a^{3}-a^{2}-3a+2\right){x}^{2}+\left(40a^{3}+4a^{2}-142a-28\right){x}-32a^{3}-5a^{2}+76a+16$ |
31.3-a4 |
31.3-a |
$6$ |
$8$ |
\(\Q(\zeta_{15})^+\) |
$4$ |
$[4, 0]$ |
31.3 |
\( 31 \) |
\( 31^{4} \) |
$4.60400$ |
$(-2a^3-2a^2+6a+3)$ |
0 |
$\Z/2\Z\oplus\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
✓ |
|
$2$ |
2Cs |
$1$ |
\( 2 \) |
$1$ |
$226.2402485$ |
0.843147624 |
\( \frac{17801814367097}{923521} a^{3} + \frac{14868316428812}{923521} a^{2} - \frac{44271766433252}{923521} a - \frac{9739909921969}{923521} \) |
\( \bigl[a^{3} - 2 a\) , \( a^{3} - a^{2} - 3 a + 2\) , \( a^{3} + a^{2} - 3 a - 1\) , \( 25 a^{3} + 4 a^{2} - 97 a - 18\) , \( 82 a^{3} + 20 a^{2} - 308 a - 64\bigr] \) |
${y}^2+\left(a^{3}-2a\right){x}{y}+\left(a^{3}+a^{2}-3a-1\right){y}={x}^{3}+\left(a^{3}-a^{2}-3a+2\right){x}^{2}+\left(25a^{3}+4a^{2}-97a-18\right){x}+82a^{3}+20a^{2}-308a-64$ |
31.3-a5 |
31.3-a |
$6$ |
$8$ |
\(\Q(\zeta_{15})^+\) |
$4$ |
$[4, 0]$ |
31.3 |
\( 31 \) |
\( 31^{2} \) |
$4.60400$ |
$(-2a^3-2a^2+6a+3)$ |
0 |
$\Z/4\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
✓ |
|
$2$ |
2B |
$1$ |
\( 2 \) |
$1$ |
$226.2402485$ |
0.843147624 |
\( -\frac{1765389}{961} a^{3} - \frac{1884681}{961} a^{2} + \frac{4161259}{961} a + \frac{1928412}{961} \) |
\( \bigl[a^{3} - 2 a\) , \( a^{3} - a^{2} - 3 a + 2\) , \( a^{3} + a^{2} - 3 a - 1\) , \( -a^{2} - 2 a + 2\) , \( 2 a^{3} - 8 a - 1\bigr] \) |
${y}^2+\left(a^{3}-2a\right){x}{y}+\left(a^{3}+a^{2}-3a-1\right){y}={x}^{3}+\left(a^{3}-a^{2}-3a+2\right){x}^{2}+\left(-a^{2}-2a+2\right){x}+2a^{3}-8a-1$ |
31.3-a6 |
31.3-a |
$6$ |
$8$ |
\(\Q(\zeta_{15})^+\) |
$4$ |
$[4, 0]$ |
31.3 |
\( 31 \) |
\( 31^{16} \) |
$4.60400$ |
$(-2a^3-2a^2+6a+3)$ |
0 |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
✓ |
|
$2$ |
2B |
$4$ |
\( 2 \) |
$1$ |
$14.14001553$ |
0.843147624 |
\( \frac{17216766333469942774436560624}{727423121747185263828481} a^{3} - \frac{52426907107682729263745202448}{727423121747185263828481} a^{2} + \frac{33240480633127353737657993249}{727423121747185263828481} a + \frac{9399400109123561576571971302}{727423121747185263828481} \) |
\( \bigl[a^{3} - 2 a\) , \( a^{3} - a^{2} - 3 a + 2\) , \( a^{3} + a^{2} - 3 a - 1\) , \( -175 a^{3} - 61 a^{2} + 638 a + 137\) , \( 89 a^{3} + 13 a^{2} - 402 a - 82\bigr] \) |
${y}^2+\left(a^{3}-2a\right){x}{y}+\left(a^{3}+a^{2}-3a-1\right){y}={x}^{3}+\left(a^{3}-a^{2}-3a+2\right){x}^{2}+\left(-175a^{3}-61a^{2}+638a+137\right){x}+89a^{3}+13a^{2}-402a-82$ |
31.3-b1 |
31.3-b |
$6$ |
$8$ |
\(\Q(\zeta_{15})^+\) |
$4$ |
$[4, 0]$ |
31.3 |
\( 31 \) |
\( 31^{4} \) |
$4.60400$ |
$(-2a^3-2a^2+6a+3)$ |
0 |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
✓ |
|
$2$ |
2B |
$16$ |
\( 2 \) |
$1$ |
$2.959428063$ |
0.705864781 |
\( -\frac{3352161032683862028986803952}{923521} a^{3} + \frac{9909977575470350951831216400}{923521} a^{2} - \frac{5978197446809240162656682401}{923521} a - \frac{1713525152117869864310632982}{923521} \) |
\( \bigl[a\) , \( -a - 1\) , \( 0\) , \( 5 a^{3} - 75 a^{2} + 320 a - 384\) , \( 330 a^{3} - 1847 a^{2} + 3763 a - 2740\bigr] \) |
${y}^2+a{x}{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(5a^{3}-75a^{2}+320a-384\right){x}+330a^{3}-1847a^{2}+3763a-2740$ |
31.3-b2 |
31.3-b |
$6$ |
$8$ |
\(\Q(\zeta_{15})^+\) |
$4$ |
$[4, 0]$ |
31.3 |
\( 31 \) |
\( 31^{2} \) |
$4.60400$ |
$(-2a^3-2a^2+6a+3)$ |
0 |
$\Z/8\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
✓ |
|
$2$ |
2B |
$1$ |
\( 2 \) |
$1$ |
$757.6135842$ |
0.705864781 |
\( \frac{1366643918492895232}{961} a^{3} + \frac{1130359602108196159}{961} a^{2} - \frac{3401298865000275452}{961} a - \frac{747980482361750548}{961} \) |
\( \bigl[a\) , \( -a - 1\) , \( 0\) , \( 5 a^{2} - 20 a - 64\) , \( -7 a^{3} - 11 a^{2} + 120 a + 219\bigr] \) |
${y}^2+a{x}{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(5a^{2}-20a-64\right){x}-7a^{3}-11a^{2}+120a+219$ |
31.3-b3 |
31.3-b |
$6$ |
$8$ |
\(\Q(\zeta_{15})^+\) |
$4$ |
$[4, 0]$ |
31.3 |
\( 31 \) |
\( 31^{8} \) |
$4.60400$ |
$(-2a^3-2a^2+6a+3)$ |
0 |
$\Z/2\Z\oplus\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
✓ |
|
$2$ |
2Cs |
$4$ |
\( 2 \) |
$1$ |
$47.35084901$ |
0.705864781 |
\( -\frac{11010764002907552479232}{852891037441} a^{3} + \frac{32551084210297485030913}{852891037441} a^{2} - \frac{19636479236469948927748}{852891037441} a - \frac{5628354043368086906140}{852891037441} \) |
\( \bigl[a\) , \( -a - 1\) , \( 0\) , \( -5 a^{2} + 20 a - 24\) , \( 7 a^{3} - 35 a^{2} + 64 a - 35\bigr] \) |
${y}^2+a{x}{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(-5a^{2}+20a-24\right){x}+7a^{3}-35a^{2}+64a-35$ |
31.3-b4 |
31.3-b |
$6$ |
$8$ |
\(\Q(\zeta_{15})^+\) |
$4$ |
$[4, 0]$ |
31.3 |
\( 31 \) |
\( 31^{4} \) |
$4.60400$ |
$(-2a^3-2a^2+6a+3)$ |
0 |
$\Z/2\Z\oplus\Z/4\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
✓ |
|
$2$ |
2Cs |
$1$ |
\( 2 \) |
$1$ |
$757.6135842$ |
0.705864781 |
\( \frac{17801814367097}{923521} a^{3} + \frac{14868316428812}{923521} a^{2} - \frac{44271766433252}{923521} a - \frac{9739909921969}{923521} \) |
\( \bigl[a\) , \( -a - 1\) , \( 0\) , \( -4\) , \( -a^{2} + 4 a + 4\bigr] \) |
${y}^2+a{x}{y}={x}^{3}+\left(-a-1\right){x}^{2}-4{x}-a^{2}+4a+4$ |
31.3-b5 |
31.3-b |
$6$ |
$8$ |
\(\Q(\zeta_{15})^+\) |
$4$ |
$[4, 0]$ |
31.3 |
\( 31 \) |
\( 31^{2} \) |
$4.60400$ |
$(-2a^3-2a^2+6a+3)$ |
0 |
$\Z/8\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
✓ |
|
$2$ |
2B |
$1$ |
\( 2 \) |
$1$ |
$757.6135842$ |
0.705864781 |
\( -\frac{1765389}{961} a^{3} - \frac{1884681}{961} a^{2} + \frac{4161259}{961} a + \frac{1928412}{961} \) |
\( \bigl[a\) , \( -a - 1\) , \( 0\) , \( 1\) , \( 0\bigr] \) |
${y}^2+a{x}{y}={x}^{3}+\left(-a-1\right){x}^{2}+{x}$ |
31.3-b6 |
31.3-b |
$6$ |
$8$ |
\(\Q(\zeta_{15})^+\) |
$4$ |
$[4, 0]$ |
31.3 |
\( 31 \) |
\( 31^{16} \) |
$4.60400$ |
$(-2a^3-2a^2+6a+3)$ |
0 |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
✓ |
|
$2$ |
2B |
$16$ |
\( 2 \) |
$1$ |
$2.959428063$ |
0.705864781 |
\( \frac{17216766333469942774436560624}{727423121747185263828481} a^{3} - \frac{52426907107682729263745202448}{727423121747185263828481} a^{2} + \frac{33240480633127353737657993249}{727423121747185263828481} a + \frac{9399400109123561576571971302}{727423121747185263828481} \) |
\( \bigl[a\) , \( -a - 1\) , \( 0\) , \( -5 a^{3} - 15 a^{2} + 40 a + 16\) , \( -8 a^{3} + a^{2} + 125 a - 166\bigr] \) |
${y}^2+a{x}{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(-5a^{3}-15a^{2}+40a+16\right){x}-8a^{3}+a^{2}+125a-166$ |
*The rank, regulator and analytic order of Ш are
not known for all curves in the database; curves for which these are
unknown will not appear in searches specifying one of these
quantities.