Properties

Label 4.4.1125.1-31.1-a4
Base field \(\Q(\zeta_{15})^+\)
Conductor norm \( 31 \)
CM no
Base change no
Q-curve no
Torsion order \( 4 \)
Rank \( 0 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field \(\Q(\zeta_{15})^+\)

Generator \(a\), with minimal polynomial \( x^{4} - x^{3} - 4 x^{2} + 4 x + 1 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([1, 4, -4, -1, 1]))
 
gp: K = nfinit(Polrev([1, 4, -4, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, 4, -4, -1, 1]);
 

Weierstrass equation

\({y}^2+\left(a^{3}+a^{2}-3a-1\right){x}{y}+{y}={x}^{3}+\left(a^{3}-a^{2}-3a+1\right){x}^{2}+\left(-2a^{3}-a^{2}+5a+2\right){x}-2a^{3}-2a^{2}+5a+1\)
sage: E = EllipticCurve([K([-1,-3,1,1]),K([1,-3,-1,1]),K([1,0,0,0]),K([2,5,-1,-2]),K([1,5,-2,-2])])
 
gp: E = ellinit([Polrev([-1,-3,1,1]),Polrev([1,-3,-1,1]),Polrev([1,0,0,0]),Polrev([2,5,-1,-2]),Polrev([1,5,-2,-2])], K);
 
magma: E := EllipticCurve([K![-1,-3,1,1],K![1,-3,-1,1],K![1,0,0,0],K![2,5,-1,-2],K![1,5,-2,-2]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((a^3+2a^2-3a-3)\) = \((a^3+2a^2-3a-3)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 31 \) = \(31\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((a^2-8)\) = \((a^3+2a^2-3a-3)^{2}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 961 \) = \(31^{2}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( -\frac{119292}{961} a^{3} - \frac{1134908}{961} a^{2} + \frac{2242557}{961} a + \frac{309574}{961} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(0\)
Torsion structure: \(\Z/4\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(a^{3} + 2 a^{2} - 3 a - 1 : 2 a^{3} - 3 a - 1 : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 0 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(0\)
Regulator: \( 1 \)
Period: \( 226.24024852703479660383539055627057484 \)
Tamagawa product: \( 2 \)
Torsion order: \(4\)
Leading coefficient: \( 0.843147624921494 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((a^3+2a^2-3a-3)\) \(31\) \(2\) \(I_{2}\) Non-split multiplicative \(1\) \(1\) \(2\) \(2\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2, 4 and 8.
Its isogeny class 31.1-a consists of curves linked by isogenies of degrees dividing 8.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.