Generator a, with minimal polynomial
x3−x2−2x+1; class number 1.
sage:R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([1, -2, -1, 1]))
gp:K = nfinit(Polrev([1, -2, -1, 1]));
magma:R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, -2, -1, 1]);
y2+(a+1)xy+(a2+a−2)y=x3+(−a2−a+2)x2+(−a2−a+1)x−a2+1
sage:E = EllipticCurve([K([1,1,0]),K([2,-1,-1]),K([-2,1,1]),K([1,-1,-1]),K([1,0,-1])])
gp:E = ellinit([Polrev([1,1,0]),Polrev([2,-1,-1]),Polrev([-2,1,1]),Polrev([1,-1,-1]),Polrev([1,0,-1])], K);
magma:E := EllipticCurve([K![1,1,0],K![2,-1,-1],K![-2,1,1],K![1,-1,-1],K![1,0,-1]]);
This is a global minimal model.
sage:E.is_global_minimal_model()
Z/7Z
Conductor: |
N |
= |
(6) |
= |
(2)⋅(3) |
sage:E.conductor()
gp:ellglobalred(E)[1]
magma:Conductor(E);
|
Conductor norm: |
N(N) |
= |
216 |
= |
8⋅27 |
sage:E.conductor().norm()
gp:idealnorm(ellglobalred(E)[1])
magma:Norm(Conductor(E));
|
Discriminant: |
Δ |
= |
−6 |
Discriminant ideal:
|
Dmin=(Δ)
|
= |
(−6) |
= |
(2)⋅(3) |
sage:E.discriminant()
gp:E.disc
magma:Discriminant(E);
|
Discriminant norm:
|
N(Dmin)=N(Δ)
|
= |
−216 |
= |
−8⋅27 |
sage:E.discriminant().norm()
gp:norm(E.disc)
magma:Norm(Discriminant(E));
|
j-invariant: |
j |
= |
−62401 |
sage:E.j_invariant()
gp:E.j
magma:jInvariant(E);
|
Endomorphism ring: |
End(E) |
= |
Z
|
Geometric endomorphism ring: |
End(EQ) |
= |
Z
(no potential complex multiplication)
|
sage:E.has_cm(), E.cm_discriminant()
magma:HasComplexMultiplication(E);
|
Sato-Tate group: |
ST(E) |
= |
SU(2) |
Analytic rank: |
ran | = |
0
|
sage:E.rank()
magma:Rank(E);
|
Mordell-Weil rank: |
r |
= |
0 |
Regulator:
|
Reg(E/K) |
= |
1
|
Néron-Tate Regulator:
|
RegNT(E/K) |
= |
1
|
Global period: |
Ω(E/K) | ≈ |
299.31257229538945214023709328525443451 |
Tamagawa product: |
∏pcp | = |
1
= 1⋅1
|
Torsion order: |
#E(K)tor | = |
7 |
Special value: |
L(r)(E/K,1)/r! |
≈ | 0.87263140610900714909690114660424033384 |
Analytic order of Ш:
|
Шan | = |
1 (rounded) |
0.872631406≈L(E/K,1)=?#E(K)tor2⋅∣dK∣1/2#Ш(E/K)⋅Ω(E/K)⋅RegNT(E/K)⋅∏pcp≈72⋅7.0000001⋅299.312572⋅1⋅1≈0.872631406
sage:E.local_data()
magma:LocalInformation(E);
This elliptic curve is semistable.
There
are 2 primes p
of bad reduction.
This curve has non-trivial cyclic isogenies of degree d for d=
7.
Its isogeny class
216.1-b
consists of curves linked by isogenies of
degree 7.