Label |
Class |
Class size |
Class degree |
Base field |
Field degree |
Field signature |
Conductor |
Conductor norm |
Discriminant norm |
Root analytic conductor |
Bad primes |
Rank |
Torsion |
CM |
CM |
Sato-Tate |
$\Q$-curve |
Base change |
Semistable |
Potentially good |
Nonmax $\ell$ |
mod-$\ell$ images |
$Ш_{\textrm{an}}$ |
Tamagawa |
Regulator |
Period |
Leading coeff |
j-invariant |
Weierstrass coefficients |
Weierstrass equation |
27.1-a1 |
27.1-a |
$2$ |
$13$ |
\(\Q(\zeta_{7})^+\) |
$3$ |
$[3, 0]$ |
27.1 |
\( 3^{3} \) |
\( - 3^{39} \) |
$1.08342$ |
$(3)$ |
$0$ |
$\mathsf{trivial}$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
✓ |
|
$13$ |
13B.1.2 |
$1$ |
\( 13 \) |
$1$ |
$0.216755369$ |
0.402545685 |
\( -\frac{1713910976512}{1594323} \) |
\( \bigl[0\) , \( -a\) , \( a\) , \( 652 a^{2} - 391 a - 1564\) , \( 10528 a^{2} - 5979 a - 24046\bigr] \) |
${y}^2+a{y}={x}^{3}-a{x}^{2}+\left(652a^{2}-391a-1564\right){x}+10528a^{2}-5979a-24046$ |
27.1-a2 |
27.1-a |
$2$ |
$13$ |
\(\Q(\zeta_{7})^+\) |
$3$ |
$[3, 0]$ |
27.1 |
\( 3^{3} \) |
\( - 3^{3} \) |
$1.08342$ |
$(3)$ |
$0$ |
$\Z/13\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
✓ |
|
$13$ |
13B.1.1 |
$1$ |
\( 1 \) |
$1$ |
$476.2115463$ |
0.402545685 |
\( -\frac{28672}{3} \) |
\( \bigl[0\) , \( -a\) , \( a\) , \( 2 a^{2} - a - 4\) , \( -2 a^{2} + a + 4\bigr] \) |
${y}^2+a{y}={x}^{3}-a{x}^{2}+\left(2a^{2}-a-4\right){x}-2a^{2}+a+4$ |
41.1-a1 |
41.1-a |
$4$ |
$10$ |
\(\Q(\zeta_{7})^+\) |
$3$ |
$[3, 0]$ |
41.1 |
\( 41 \) |
\( - 41^{10} \) |
$1.16154$ |
$(a^2+2a-4)$ |
$0$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
✓ |
|
$2, 5$ |
2B, 5B.1.2 |
$1$ |
\( 2 \cdot 5 \) |
$1$ |
$1.357827366$ |
0.484938345 |
\( \frac{182915726357803972950650}{13422659310152401} a^{2} - \frac{357571850055303381213985}{13422659310152401} a + \frac{50482569444763032743584}{13422659310152401} \) |
\( \bigl[1\) , \( -a^{2} + 3\) , \( 1\) , \( 99 a^{2} - 10 a - 348\) , \( 952 a^{2} - 216 a - 2798\bigr] \) |
${y}^2+{x}{y}+{y}={x}^{3}+\left(-a^{2}+3\right){x}^{2}+\left(99a^{2}-10a-348\right){x}+952a^{2}-216a-2798$ |
41.1-a2 |
41.1-a |
$4$ |
$10$ |
\(\Q(\zeta_{7})^+\) |
$3$ |
$[3, 0]$ |
41.1 |
\( 41 \) |
\( 41^{5} \) |
$1.16154$ |
$(a^2+2a-4)$ |
$0$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
✓ |
|
$2, 5$ |
2B, 5B.1.2 |
$1$ |
\( 5 \) |
$1$ |
$2.715654732$ |
0.484938345 |
\( -\frac{1469483101129546552831}{115856201} a^{2} + \frac{815501597212588028076}{115856201} a + \frac{3301898555789100922576}{115856201} \) |
\( \bigl[1\) , \( -a^{2} + 3\) , \( 1\) , \( 144 a^{2} - 75 a - 328\) , \( 1172 a^{2} - 646 a - 2650\bigr] \) |
${y}^2+{x}{y}+{y}={x}^{3}+\left(-a^{2}+3\right){x}^{2}+\left(144a^{2}-75a-328\right){x}+1172a^{2}-646a-2650$ |
41.1-a3 |
41.1-a |
$4$ |
$10$ |
\(\Q(\zeta_{7})^+\) |
$3$ |
$[3, 0]$ |
41.1 |
\( 41 \) |
\( 41 \) |
$1.16154$ |
$(a^2+2a-4)$ |
$0$ |
$\Z/10\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
✓ |
|
$2, 5$ |
2B, 5B.1.1 |
$1$ |
\( 1 \) |
$1$ |
$339.4568415$ |
0.484938345 |
\( -\frac{968480}{41} a^{2} - \frac{734681}{41} a + \frac{589810}{41} \) |
\( \bigl[1\) , \( -a^{2} + 3\) , \( 1\) , \( -a^{2} + 2\) , \( 0\bigr] \) |
${y}^2+{x}{y}+{y}={x}^{3}+\left(-a^{2}+3\right){x}^{2}+\left(-a^{2}+2\right){x}$ |
41.1-a4 |
41.1-a |
$4$ |
$10$ |
\(\Q(\zeta_{7})^+\) |
$3$ |
$[3, 0]$ |
41.1 |
\( 41 \) |
\( - 41^{2} \) |
$1.16154$ |
$(a^2+2a-4)$ |
$0$ |
$\Z/10\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
✓ |
|
$2, 5$ |
2B, 5B.1.1 |
$1$ |
\( 2 \) |
$1$ |
$169.7284207$ |
0.484938345 |
\( \frac{3693705667625}{1681} a^{2} + \frac{2962060985575}{1681} a - \frac{2049821964241}{1681} \) |
\( \bigl[1\) , \( -a^{2} + 3\) , \( 1\) , \( -6 a^{2} + 7\) , \( 2 a^{2} + 4 a + 2\bigr] \) |
${y}^2+{x}{y}+{y}={x}^{3}+\left(-a^{2}+3\right){x}^{2}+\left(-6a^{2}+7\right){x}+2a^{2}+4a+2$ |
41.2-a1 |
41.2-a |
$4$ |
$10$ |
\(\Q(\zeta_{7})^+\) |
$3$ |
$[3, 0]$ |
41.2 |
\( 41 \) |
\( - 41^{10} \) |
$1.16154$ |
$(2a^2-3a-4)$ |
$0$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
✓ |
|
$2, 5$ |
2B, 5B.1.2 |
$1$ |
\( 2 \cdot 5 \) |
$1$ |
$1.357827366$ |
0.484938345 |
\( -\frac{357571850055303381213985}{13422659310152401} a^{2} + \frac{174656123697499408263335}{13422659310152401} a + \frac{773885872215674359858869}{13422659310152401} \) |
\( \bigl[1\) , \( a + 1\) , \( 1\) , \( -10 a^{2} - 89 a - 140\) , \( -216 a^{2} - 736 a - 678\bigr] \) |
${y}^2+{x}{y}+{y}={x}^{3}+\left(a+1\right){x}^{2}+\left(-10a^{2}-89a-140\right){x}-216a^{2}-736a-678$ |
41.2-a2 |
41.2-a |
$4$ |
$10$ |
\(\Q(\zeta_{7})^+\) |
$3$ |
$[3, 0]$ |
41.2 |
\( 41 \) |
\( - 41^{2} \) |
$1.16154$ |
$(2a^2-3a-4)$ |
$0$ |
$\Z/10\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
✓ |
|
$2, 5$ |
2B, 5B.1.1 |
$1$ |
\( 2 \) |
$1$ |
$169.7284207$ |
0.484938345 |
\( \frac{2962060985575}{1681} a^{2} - \frac{6655766653200}{1681} a + \frac{2375528385434}{1681} \) |
\( \bigl[1\) , \( a + 1\) , \( 1\) , \( 6 a - 5\) , \( 4 a^{2} - 6 a + 2\bigr] \) |
${y}^2+{x}{y}+{y}={x}^{3}+\left(a+1\right){x}^{2}+\left(6a-5\right){x}+4a^{2}-6a+2$ |
41.2-a3 |
41.2-a |
$4$ |
$10$ |
\(\Q(\zeta_{7})^+\) |
$3$ |
$[3, 0]$ |
41.2 |
\( 41 \) |
\( 41 \) |
$1.16154$ |
$(2a^2-3a-4)$ |
$0$ |
$\Z/10\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
✓ |
|
$2, 5$ |
2B, 5B.1.1 |
$1$ |
\( 1 \) |
$1$ |
$339.4568415$ |
0.484938345 |
\( -\frac{734681}{41} a^{2} + \frac{1703161}{41} a - \frac{612469}{41} \) |
\( \bigl[1\) , \( a + 1\) , \( 1\) , \( a\) , \( 0\bigr] \) |
${y}^2+{x}{y}+{y}={x}^{3}+\left(a+1\right){x}^{2}+a{x}$ |
41.2-a4 |
41.2-a |
$4$ |
$10$ |
\(\Q(\zeta_{7})^+\) |
$3$ |
$[3, 0]$ |
41.2 |
\( 41 \) |
\( 41^{5} \) |
$1.16154$ |
$(2a^2-3a-4)$ |
$0$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
✓ |
|
$2, 5$ |
2B, 5B.1.2 |
$1$ |
\( 5 \) |
$1$ |
$2.715654732$ |
0.484938345 |
\( \frac{815501597212588028076}{115856201} a^{2} + \frac{653981503916958524755}{115856201} a - \frac{452569243682580211162}{115856201} \) |
\( \bigl[1\) , \( a + 1\) , \( 1\) , \( -75 a^{2} - 69 a + 35\) , \( -646 a^{2} - 526 a + 340\bigr] \) |
${y}^2+{x}{y}+{y}={x}^{3}+\left(a+1\right){x}^{2}+\left(-75a^{2}-69a+35\right){x}-646a^{2}-526a+340$ |
41.3-a1 |
41.3-a |
$4$ |
$10$ |
\(\Q(\zeta_{7})^+\) |
$3$ |
$[3, 0]$ |
41.3 |
\( 41 \) |
\( - 41^{10} \) |
$1.16154$ |
$(3a^2-a-3)$ |
$0$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
✓ |
|
$2, 5$ |
2B, 5B.1.2 |
$1$ |
\( 2 \cdot 5 \) |
$1$ |
$1.357827366$ |
0.484938345 |
\( \frac{174656123697499408263335}{13422659310152401} a^{2} + \frac{182915726357803972950650}{13422659310152401} a - \frac{115913951592431810832436}{13422659310152401} \) |
\( \bigl[1\) , \( a^{2} - a - 3\) , \( 0\) , \( -91 a^{2} + 101 a - 68\) , \( -646 a^{2} + 852 a - 304\bigr] \) |
${y}^2+{x}{y}={x}^{3}+\left(a^{2}-a-3\right){x}^{2}+\left(-91a^{2}+101a-68\right){x}-646a^{2}+852a-304$ |
41.3-a2 |
41.3-a |
$4$ |
$10$ |
\(\Q(\zeta_{7})^+\) |
$3$ |
$[3, 0]$ |
41.3 |
\( 41 \) |
\( 41^{5} \) |
$1.16154$ |
$(3a^2-a-3)$ |
$0$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
✓ |
|
$2, 5$ |
2B, 5B.1.2 |
$1$ |
\( 5 \) |
$1$ |
$2.715654732$ |
0.484938345 |
\( \frac{653981503916958524755}{115856201} a^{2} - \frac{1469483101129546552831}{115856201} a + \frac{524452446825637320235}{115856201} \) |
\( \bigl[1\) , \( a^{2} - a - 3\) , \( 0\) , \( -71 a^{2} + 146 a - 43\) , \( -456 a^{2} + 1027 a - 381\bigr] \) |
${y}^2+{x}{y}={x}^{3}+\left(a^{2}-a-3\right){x}^{2}+\left(-71a^{2}+146a-43\right){x}-456a^{2}+1027a-381$ |
41.3-a3 |
41.3-a |
$4$ |
$10$ |
\(\Q(\zeta_{7})^+\) |
$3$ |
$[3, 0]$ |
41.3 |
\( 41 \) |
\( - 41^{2} \) |
$1.16154$ |
$(3a^2-a-3)$ |
$0$ |
$\Z/10\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
✓ |
|
$2, 5$ |
2B, 5B.1.1 |
$1$ |
\( 2 \) |
$1$ |
$169.7284207$ |
0.484938345 |
\( -\frac{6655766653200}{1681} a^{2} + \frac{3693705667625}{1681} a + \frac{14955417009784}{1681} \) |
\( \bigl[1\) , \( a^{2} - a - 3\) , \( 0\) , \( 4 a^{2} - 4 a - 8\) , \( -11 a^{2} + 7 a + 26\bigr] \) |
${y}^2+{x}{y}={x}^{3}+\left(a^{2}-a-3\right){x}^{2}+\left(4a^{2}-4a-8\right){x}-11a^{2}+7a+26$ |
41.3-a4 |
41.3-a |
$4$ |
$10$ |
\(\Q(\zeta_{7})^+\) |
$3$ |
$[3, 0]$ |
41.3 |
\( 41 \) |
\( 41 \) |
$1.16154$ |
$(3a^2-a-3)$ |
$0$ |
$\Z/10\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
✓ |
|
$2, 5$ |
2B, 5B.1.1 |
$1$ |
\( 1 \) |
$1$ |
$339.4568415$ |
0.484938345 |
\( \frac{1703161}{41} a^{2} - \frac{968480}{41} a - \frac{3784992}{41} \) |
\( \bigl[1\) , \( a^{2} - a - 3\) , \( 0\) , \( -a^{2} + a + 2\) , \( 0\bigr] \) |
${y}^2+{x}{y}={x}^{3}+\left(a^{2}-a-3\right){x}^{2}+\left(-a^{2}+a+2\right){x}$ |
49.1-a1 |
49.1-a |
$4$ |
$14$ |
\(\Q(\zeta_{7})^+\) |
$3$ |
$[3, 0]$ |
49.1 |
\( 7^{2} \) |
\( 7^{3} \) |
$1.19656$ |
$(-a^2-a+2)$ |
$0$ |
$\Z/14\Z$ |
$\textsf{potential}$ |
$-28$ |
$N(\mathrm{U}(1))$ |
✓ |
✓ |
|
✓ |
$7$ |
7B.1.1[3] |
$1$ |
\( 2 \) |
$1$ |
$354.0802648$ |
0.516151989 |
\( 16581375 \) |
\( \bigl[a^{2} - 2\) , \( a^{2} - a - 3\) , \( a + 1\) , \( 62 a^{2} - 26 a - 156\) , \( -380 a^{2} + 192 a + 886\bigr] \) |
${y}^2+\left(a^{2}-2\right){x}{y}+\left(a+1\right){y}={x}^{3}+\left(a^{2}-a-3\right){x}^{2}+\left(62a^{2}-26a-156\right){x}-380a^{2}+192a+886$ |
49.1-a2 |
49.1-a |
$4$ |
$14$ |
\(\Q(\zeta_{7})^+\) |
$3$ |
$[3, 0]$ |
49.1 |
\( 7^{2} \) |
\( - 7^{3} \) |
$1.19656$ |
$(-a^2-a+2)$ |
$0$ |
$\Z/14\Z$ |
$\textsf{potential}$ |
$-7$ |
$N(\mathrm{U}(1))$ |
✓ |
✓ |
|
✓ |
$7$ |
7B.1.1[3] |
$1$ |
\( 2 \) |
$1$ |
$354.0802648$ |
0.516151989 |
\( -3375 \) |
\( \bigl[a^{2} - 2\) , \( a^{2} - a - 3\) , \( a + 1\) , \( 2 a^{2} - a - 6\) , \( -9 a^{2} + 4 a + 20\bigr] \) |
${y}^2+\left(a^{2}-2\right){x}{y}+\left(a+1\right){y}={x}^{3}+\left(a^{2}-a-3\right){x}^{2}+\left(2a^{2}-a-6\right){x}-9a^{2}+4a+20$ |
49.1-a3 |
49.1-a |
$4$ |
$14$ |
\(\Q(\zeta_{7})^+\) |
$3$ |
$[3, 0]$ |
49.1 |
\( 7^{2} \) |
\( 7^{9} \) |
$1.19656$ |
$(-a^2-a+2)$ |
$0$ |
$\Z/2\Z$ |
$\textsf{potential}$ |
$-28$ |
$N(\mathrm{U}(1))$ |
✓ |
✓ |
|
✓ |
$7$ |
7B.1.6[3] |
$1$ |
\( 2 \) |
$1$ |
$7.226127854$ |
0.516151989 |
\( 16581375 \) |
\( \bigl[1\) , \( -1\) , \( 0\) , \( -37\) , \( -78\bigr] \) |
${y}^2+{x}{y}={x}^{3}-{x}^{2}-37{x}-78$ |
49.1-a4 |
49.1-a |
$4$ |
$14$ |
\(\Q(\zeta_{7})^+\) |
$3$ |
$[3, 0]$ |
49.1 |
\( 7^{2} \) |
\( - 7^{9} \) |
$1.19656$ |
$(-a^2-a+2)$ |
$0$ |
$\Z/2\Z$ |
$\textsf{potential}$ |
$-7$ |
$N(\mathrm{U}(1))$ |
✓ |
✓ |
|
✓ |
$7$ |
7B.1.6[3] |
$1$ |
\( 2 \) |
$1$ |
$7.226127854$ |
0.516151989 |
\( -3375 \) |
\( \bigl[1\) , \( -1\) , \( 0\) , \( -2\) , \( -1\bigr] \) |
${y}^2+{x}{y}={x}^{3}-{x}^{2}-2{x}-1$ |
56.1-a1 |
56.1-a |
$6$ |
$18$ |
\(\Q(\zeta_{7})^+\) |
$3$ |
$[3, 0]$ |
56.1 |
\( 2^{3} \cdot 7 \) |
\( 2^{27} \cdot 7^{6} \) |
$1.22349$ |
$(-a^2-a+2), (2)$ |
$0$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
✓ |
|
$2, 3$ |
2B, 3B.1.2 |
$9$ |
\( 2 \cdot 3 \) |
$1$ |
$0.288080952$ |
0.555584693 |
\( \frac{2251439055699625}{25088} \) |
\( \bigl[1\) , \( 0\) , \( 1\) , \( -2731\) , \( -55146\bigr] \) |
${y}^2+{x}{y}+{y}={x}^{3}-2731{x}-55146$ |
56.1-a2 |
56.1-a |
$6$ |
$18$ |
\(\Q(\zeta_{7})^+\) |
$3$ |
$[3, 0]$ |
56.1 |
\( 2^{3} \cdot 7 \) |
\( - 2^{54} \cdot 7^{3} \) |
$1.22349$ |
$(-a^2-a+2), (2)$ |
$0$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
✓ |
|
$2, 3$ |
2B, 3B.1.2 |
$9$ |
\( 2 \cdot 3 \) |
$1$ |
$0.288080952$ |
0.555584693 |
\( -\frac{548347731625}{1835008} \) |
\( \bigl[1\) , \( 0\) , \( 1\) , \( -171\) , \( -874\bigr] \) |
${y}^2+{x}{y}+{y}={x}^{3}-171{x}-874$ |
56.1-a3 |
56.1-a |
$6$ |
$18$ |
\(\Q(\zeta_{7})^+\) |
$3$ |
$[3, 0]$ |
56.1 |
\( 2^{3} \cdot 7 \) |
\( 2^{9} \cdot 7^{18} \) |
$1.22349$ |
$(-a^2-a+2), (2)$ |
$0$ |
$\Z/6\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
✓ |
|
$2, 3$ |
2B, 3Cs.1.1 |
$1$ |
\( 2 \cdot 3^{2} \) |
$1$ |
$7.778185713$ |
0.555584693 |
\( \frac{4956477625}{941192} \) |
\( \bigl[1\) , \( 0\) , \( 1\) , \( -36\) , \( -70\bigr] \) |
${y}^2+{x}{y}+{y}={x}^{3}-36{x}-70$ |
56.1-a4 |
56.1-a |
$6$ |
$18$ |
\(\Q(\zeta_{7})^+\) |
$3$ |
$[3, 0]$ |
56.1 |
\( 2^{3} \cdot 7 \) |
\( 2^{3} \cdot 7^{6} \) |
$1.22349$ |
$(-a^2-a+2), (2)$ |
$0$ |
$\Z/18\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
✓ |
|
$2, 3$ |
2B, 3B.1.1 |
$1$ |
\( 2 \cdot 3 \) |
$1$ |
$210.0110142$ |
0.555584693 |
\( \frac{128787625}{98} \) |
\( \bigl[1\) , \( 0\) , \( 1\) , \( -11\) , \( 12\bigr] \) |
${y}^2+{x}{y}+{y}={x}^{3}-11{x}+12$ |
56.1-a5 |
56.1-a |
$6$ |
$18$ |
\(\Q(\zeta_{7})^+\) |
$3$ |
$[3, 0]$ |
56.1 |
\( 2^{3} \cdot 7 \) |
\( - 2^{6} \cdot 7^{3} \) |
$1.22349$ |
$(-a^2-a+2), (2)$ |
$0$ |
$\Z/18\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
✓ |
|
$2, 3$ |
2B, 3B.1.1 |
$1$ |
\( 2 \cdot 3 \) |
$1$ |
$210.0110142$ |
0.555584693 |
\( -\frac{15625}{28} \) |
\( \bigl[1\) , \( 0\) , \( 1\) , \( -1\) , \( 0\bigr] \) |
${y}^2+{x}{y}+{y}={x}^{3}-{x}$ |
56.1-a6 |
56.1-a |
$6$ |
$18$ |
\(\Q(\zeta_{7})^+\) |
$3$ |
$[3, 0]$ |
56.1 |
\( 2^{3} \cdot 7 \) |
\( - 2^{18} \cdot 7^{9} \) |
$1.22349$ |
$(-a^2-a+2), (2)$ |
$0$ |
$\Z/6\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
✓ |
|
$2, 3$ |
2B, 3Cs.1.1 |
$1$ |
\( 2 \cdot 3^{2} \) |
$1$ |
$7.778185713$ |
0.555584693 |
\( \frac{9938375}{21952} \) |
\( \bigl[1\) , \( 0\) , \( 1\) , \( 4\) , \( -6\bigr] \) |
${y}^2+{x}{y}+{y}={x}^{3}+4{x}-6$ |
64.1-a1 |
64.1-a |
$8$ |
$12$ |
\(\Q(\zeta_{7})^+\) |
$3$ |
$[3, 0]$ |
64.1 |
\( 2^{6} \) |
\( - 2^{24} \) |
$1.25103$ |
$(2)$ |
$0$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
✓ |
$2, 3$ |
2B, 3B.1.2 |
$9$ |
\( 1 \) |
$1$ |
$1.746658170$ |
0.561425840 |
\( -72061125694419920 a^{2} + 39990907711475312 a + 161919879656286672 \) |
\( \bigl[0\) , \( -a\) , \( 0\) , \( 1742 a^{2} - 971 a - 3929\) , \( 42399 a^{2} - 23535 a - 95292\bigr] \) |
${y}^2={x}^{3}-a{x}^{2}+\left(1742a^{2}-971a-3929\right){x}+42399a^{2}-23535a-95292$ |
64.1-a2 |
64.1-a |
$8$ |
$12$ |
\(\Q(\zeta_{7})^+\) |
$3$ |
$[3, 0]$ |
64.1 |
\( 2^{6} \) |
\( - 2^{24} \) |
$1.25103$ |
$(2)$ |
$0$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
✓ |
$2, 3$ |
2B, 3B.1.2 |
$9$ |
\( 1 \) |
$1$ |
$1.746658170$ |
0.561425840 |
\( 32070217982944608 a^{2} - 72061125694419920 a + 25718317995977536 \) |
\( \bigl[0\) , \( -a\) , \( 0\) , \( 72 a^{2} + 4 a - 264\) , \( 500 a^{2} - 16 a - 1624\bigr] \) |
${y}^2={x}^{3}-a{x}^{2}+\left(72a^{2}+4a-264\right){x}+500a^{2}-16a-1624$ |
64.1-a3 |
64.1-a |
$8$ |
$12$ |
\(\Q(\zeta_{7})^+\) |
$3$ |
$[3, 0]$ |
64.1 |
\( 2^{6} \) |
\( 2^{12} \) |
$1.25103$ |
$(2)$ |
$0$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
|
✓ |
$2, 3$ |
2Cs, 3B.1.2 |
$9$ |
\( 1 \) |
$1$ |
$6.986632680$ |
0.561425840 |
\( 406749952 \) |
\( \bigl[0\) , \( -a\) , \( 0\) , \( 102 a^{2} - 61 a - 244\) , \( 640 a^{2} - 360 a - 1460\bigr] \) |
${y}^2={x}^{3}-a{x}^{2}+\left(102a^{2}-61a-244\right){x}+640a^{2}-360a-1460$ |
64.1-a4 |
64.1-a |
$8$ |
$12$ |
\(\Q(\zeta_{7})^+\) |
$3$ |
$[3, 0]$ |
64.1 |
\( 2^{6} \) |
\( - 2^{24} \) |
$1.25103$ |
$(2)$ |
$0$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
✓ |
$2, 3$ |
2B, 3B.1.2 |
$9$ |
\( 1 \) |
$1$ |
$1.746658170$ |
0.561425840 |
\( 39990907711475312 a^{2} + 32070217982944608 a - 22193279444028480 \) |
\( \bigl[0\) , \( -a\) , \( 0\) , \( 17 a^{2} - 131 a - 199\) , \( -6 a^{2} - 855 a - 1073\bigr] \) |
${y}^2={x}^{3}-a{x}^{2}+\left(17a^{2}-131a-199\right){x}-6a^{2}-855a-1073$ |
64.1-a5 |
64.1-a |
$8$ |
$12$ |
\(\Q(\zeta_{7})^+\) |
$3$ |
$[3, 0]$ |
64.1 |
\( 2^{6} \) |
\( - 2^{24} \) |
$1.25103$ |
$(2)$ |
$0$ |
$\Z/6\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
✓ |
$2, 3$ |
2B, 3B.1.1 |
$1$ |
\( 3 \) |
$1$ |
$47.15977059$ |
0.561425840 |
\( -208912 a^{2} + 65520 a + 561936 \) |
\( \bigl[0\) , \( -a\) , \( 0\) , \( 22 a^{2} - 11 a - 49\) , \( 55 a^{2} - 31 a - 124\bigr] \) |
${y}^2={x}^{3}-a{x}^{2}+\left(22a^{2}-11a-49\right){x}+55a^{2}-31a-124$ |
64.1-a6 |
64.1-a |
$8$ |
$12$ |
\(\Q(\zeta_{7})^+\) |
$3$ |
$[3, 0]$ |
64.1 |
\( 2^{6} \) |
\( - 2^{24} \) |
$1.25103$ |
$(2)$ |
$0$ |
$\Z/6\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
✓ |
$2, 3$ |
2B, 3B.1.1 |
$1$ |
\( 3 \) |
$1$ |
$47.15977059$ |
0.561425840 |
\( 65520 a^{2} + 143392 a + 78592 \) |
\( \bigl[0\) , \( -a\) , \( 0\) , \( 17 a^{2} - 11 a - 39\) , \( -46 a^{2} + 25 a + 103\bigr] \) |
${y}^2={x}^{3}-a{x}^{2}+\left(17a^{2}-11a-39\right){x}-46a^{2}+25a+103$ |
64.1-a7 |
64.1-a |
$8$ |
$12$ |
\(\Q(\zeta_{7})^+\) |
$3$ |
$[3, 0]$ |
64.1 |
\( 2^{6} \) |
\( 2^{12} \) |
$1.25103$ |
$(2)$ |
$0$ |
$\Z/2\Z\oplus\Z/6\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
|
✓ |
$2, 3$ |
2Cs, 3B.1.1 |
$1$ |
\( 3 \) |
$1$ |
$188.6390823$ |
0.561425840 |
\( 1792 \) |
\( \bigl[0\) , \( -a\) , \( 0\) , \( 2 a^{2} - a - 4\) , \( 0\bigr] \) |
${y}^2={x}^{3}-a{x}^{2}+\left(2a^{2}-a-4\right){x}$ |
64.1-a8 |
64.1-a |
$8$ |
$12$ |
\(\Q(\zeta_{7})^+\) |
$3$ |
$[3, 0]$ |
64.1 |
\( 2^{6} \) |
\( - 2^{24} \) |
$1.25103$ |
$(2)$ |
$0$ |
$\Z/6\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
✓ |
$2, 3$ |
2B, 3B.1.1 |
$1$ |
\( 3 \) |
$1$ |
$47.15977059$ |
0.561425840 |
\( 143392 a^{2} - 208912 a + 66240 \) |
\( \bigl[0\) , \( -a\) , \( 0\) , \( -8 a^{2} + 4 a + 16\) , \( 4 a^{2} - 8\bigr] \) |
${y}^2={x}^{3}-a{x}^{2}+\left(-8a^{2}+4a+16\right){x}+4a^{2}-8$ |
71.1-a1 |
71.1-a |
$4$ |
$10$ |
\(\Q(\zeta_{7})^+\) |
$3$ |
$[3, 0]$ |
71.1 |
\( 71 \) |
\( - 71^{10} \) |
$1.27286$ |
$(4a^2-3a-5)$ |
$0$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
✓ |
|
$2, 5$ |
2B, 5B.1.2 |
$1$ |
\( 2 \cdot 5 \) |
$1$ |
$1.644803638$ |
0.587429871 |
\( \frac{808193592087701284035551}{3255243551009881201} a^{2} - \frac{1936929577866441496465968}{3255243551009881201} a + \frac{752245811606895893913582}{3255243551009881201} \) |
\( \bigl[1\) , \( -a\) , \( a + 1\) , \( -190 a^{2} + 410 a - 171\) , \( -2384 a^{2} + 5309 a - 1936\bigr] \) |
${y}^2+{x}{y}+\left(a+1\right){y}={x}^{3}-a{x}^{2}+\left(-190a^{2}+410a-171\right){x}-2384a^{2}+5309a-1936$ |
71.1-a2 |
71.1-a |
$4$ |
$10$ |
\(\Q(\zeta_{7})^+\) |
$3$ |
$[3, 0]$ |
71.1 |
\( 71 \) |
\( - 71^{5} \) |
$1.27286$ |
$(4a^2-3a-5)$ |
$0$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
✓ |
|
$2, 5$ |
2B, 5B.1.2 |
$1$ |
\( 5 \) |
$1$ |
$3.289607277$ |
0.587429871 |
\( \frac{385959155459705697}{1804229351} a^{2} + \frac{539799973605204231}{1804229351} a + \frac{72968192065230101}{1804229351} \) |
\( \bigl[1\) , \( -a\) , \( a + 1\) , \( -10 a^{2} + 5 a - 26\) , \( -61 a^{2} + 92 a - 76\bigr] \) |
${y}^2+{x}{y}+\left(a+1\right){y}={x}^{3}-a{x}^{2}+\left(-10a^{2}+5a-26\right){x}-61a^{2}+92a-76$ |
71.1-a3 |
71.1-a |
$4$ |
$10$ |
\(\Q(\zeta_{7})^+\) |
$3$ |
$[3, 0]$ |
71.1 |
\( 71 \) |
\( - 71^{2} \) |
$1.27286$ |
$(4a^2-3a-5)$ |
$0$ |
$\Z/10\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
✓ |
|
$2, 5$ |
2B, 5B.1.1 |
$1$ |
\( 2 \) |
$1$ |
$205.6004548$ |
0.587429871 |
\( -\frac{1885779500418}{5041} a^{2} + \frac{1044582831031}{5041} a + \frac{4240814798194}{5041} \) |
\( \bigl[1\) , \( -a\) , \( a + 1\) , \( -5 a^{2} + 15 a - 11\) , \( 12 a^{2} - 31 a + 15\bigr] \) |
${y}^2+{x}{y}+\left(a+1\right){y}={x}^{3}-a{x}^{2}+\left(-5a^{2}+15a-11\right){x}+12a^{2}-31a+15$ |
71.1-a4 |
71.1-a |
$4$ |
$10$ |
\(\Q(\zeta_{7})^+\) |
$3$ |
$[3, 0]$ |
71.1 |
\( 71 \) |
\( -71 \) |
$1.27286$ |
$(4a^2-3a-5)$ |
$0$ |
$\Z/10\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
✓ |
|
$2, 5$ |
2B, 5B.1.1 |
$1$ |
\( 1 \) |
$1$ |
$411.2009097$ |
0.587429871 |
\( -\frac{713073}{71} a^{2} + \frac{710952}{71} a + \frac{1959524}{71} \) |
\( \bigl[1\) , \( -a\) , \( a + 1\) , \( -1\) , \( -a\bigr] \) |
${y}^2+{x}{y}+\left(a+1\right){y}={x}^{3}-a{x}^{2}-{x}-a$ |
71.2-a1 |
71.2-a |
$4$ |
$10$ |
\(\Q(\zeta_{7})^+\) |
$3$ |
$[3, 0]$ |
71.2 |
\( 71 \) |
\( - 71^{10} \) |
$1.27286$ |
$(-3a^2+4a+5)$ |
$0$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
✓ |
|
$2, 5$ |
2B, 5B.1.2 |
$1$ |
\( 2 \cdot 5 \) |
$1$ |
$1.644803638$ |
0.587429871 |
\( -\frac{1936929577866441496465968}{3255243551009881201} a^{2} + \frac{1128735985778740212430417}{3255243551009881201} a + \frac{4305562573648739958450652}{3255243551009881201} \) |
\( \bigl[1\) , \( -a^{2} + a + 1\) , \( a^{2} + a - 2\) , \( 410 a^{2} - 221 a - 960\) , \( 5309 a^{2} - 2926 a - 12013\bigr] \) |
${y}^2+{x}{y}+\left(a^{2}+a-2\right){y}={x}^{3}+\left(-a^{2}+a+1\right){x}^{2}+\left(410a^{2}-221a-960\right){x}+5309a^{2}-2926a-12013$ |
71.2-a2 |
71.2-a |
$4$ |
$10$ |
\(\Q(\zeta_{7})^+\) |
$3$ |
$[3, 0]$ |
71.2 |
\( 71 \) |
\( - 71^{5} \) |
$1.27286$ |
$(-3a^2+4a+5)$ |
$0$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
✓ |
|
$2, 5$ |
2B, 5B.1.2 |
$1$ |
\( 5 \) |
$1$ |
$3.289607277$ |
0.587429871 |
\( \frac{539799973605204231}{1804229351} a^{2} - \frac{925759129064909928}{1804229351} a + \frac{305086529379437264}{1804229351} \) |
\( \bigl[1\) , \( -a^{2} + a + 1\) , \( a^{2} + a - 2\) , \( 5 a^{2} + 4 a - 50\) , \( 92 a^{2} - 32 a - 290\bigr] \) |
${y}^2+{x}{y}+\left(a^{2}+a-2\right){y}={x}^{3}+\left(-a^{2}+a+1\right){x}^{2}+\left(5a^{2}+4a-50\right){x}+92a^{2}-32a-290$ |
71.2-a3 |
71.2-a |
$4$ |
$10$ |
\(\Q(\zeta_{7})^+\) |
$3$ |
$[3, 0]$ |
71.2 |
\( 71 \) |
\( - 71^{2} \) |
$1.27286$ |
$(-3a^2+4a+5)$ |
$0$ |
$\Z/10\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
✓ |
|
$2, 5$ |
2B, 5B.1.1 |
$1$ |
\( 2 \) |
$1$ |
$205.6004548$ |
0.587429871 |
\( \frac{1044582831031}{5041} a^{2} + \frac{841196669387}{5041} a - \frac{575327033673}{5041} \) |
\( \bigl[1\) , \( -a^{2} + a + 1\) , \( a^{2} + a - 2\) , \( 15 a^{2} - 11 a - 35\) , \( -31 a^{2} + 18 a + 70\bigr] \) |
${y}^2+{x}{y}+\left(a^{2}+a-2\right){y}={x}^{3}+\left(-a^{2}+a+1\right){x}^{2}+\left(15a^{2}-11a-35\right){x}-31a^{2}+18a+70$ |
71.2-a4 |
71.2-a |
$4$ |
$10$ |
\(\Q(\zeta_{7})^+\) |
$3$ |
$[3, 0]$ |
71.2 |
\( 71 \) |
\( -71 \) |
$1.27286$ |
$(-3a^2+4a+5)$ |
$0$ |
$\Z/10\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
✓ |
|
$2, 5$ |
2B, 5B.1.1 |
$1$ |
\( 1 \) |
$1$ |
$411.2009097$ |
0.587429871 |
\( \frac{710952}{71} a^{2} + \frac{2121}{71} a - \frac{177574}{71} \) |
\( \bigl[1\) , \( -a^{2} + a + 1\) , \( a^{2} + a - 2\) , \( -a\) , \( -a^{2} + 1\bigr] \) |
${y}^2+{x}{y}+\left(a^{2}+a-2\right){y}={x}^{3}+\left(-a^{2}+a+1\right){x}^{2}-a{x}-a^{2}+1$ |
71.3-a1 |
71.3-a |
$4$ |
$10$ |
\(\Q(\zeta_{7})^+\) |
$3$ |
$[3, 0]$ |
71.3 |
\( 71 \) |
\( - 71^{5} \) |
$1.27286$ |
$(a^2-6)$ |
$0$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
✓ |
|
$2, 5$ |
2B, 5B.1.2 |
$1$ |
\( 5 \) |
$1$ |
$3.289607277$ |
0.587429871 |
\( -\frac{925759129064909928}{1804229351} a^{2} + \frac{385959155459705697}{1804229351} a + \frac{2310445605654755654}{1804229351} \) |
\( \bigl[1\) , \( a^{2} - 2\) , \( a^{2} - 1\) , \( 4 a^{2} - 10 a - 44\) , \( -32 a^{2} - 61 a - 73\bigr] \) |
${y}^2+{x}{y}+\left(a^{2}-1\right){y}={x}^{3}+\left(a^{2}-2\right){x}^{2}+\left(4a^{2}-10a-44\right){x}-32a^{2}-61a-73$ |
71.3-a2 |
71.3-a |
$4$ |
$10$ |
\(\Q(\zeta_{7})^+\) |
$3$ |
$[3, 0]$ |
71.3 |
\( 71 \) |
\( -71 \) |
$1.27286$ |
$(a^2-6)$ |
$0$ |
$\Z/10\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
✓ |
|
$2, 5$ |
2B, 5B.1.1 |
$1$ |
\( 1 \) |
$1$ |
$411.2009097$ |
0.587429871 |
\( \frac{2121}{71} a^{2} - \frac{713073}{71} a + \frac{1242209}{71} \) |
\( \bigl[1\) , \( a^{2} - 2\) , \( a^{2} - 1\) , \( -a^{2} + 1\) , \( 0\bigr] \) |
${y}^2+{x}{y}+\left(a^{2}-1\right){y}={x}^{3}+\left(a^{2}-2\right){x}^{2}+\left(-a^{2}+1\right){x}$ |
71.3-a3 |
71.3-a |
$4$ |
$10$ |
\(\Q(\zeta_{7})^+\) |
$3$ |
$[3, 0]$ |
71.3 |
\( 71 \) |
\( - 71^{2} \) |
$1.27286$ |
$(a^2-6)$ |
$0$ |
$\Z/10\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
✓ |
|
$2, 5$ |
2B, 5B.1.1 |
$1$ |
\( 2 \) |
$1$ |
$205.6004548$ |
0.587429871 |
\( \frac{841196669387}{5041} a^{2} - \frac{1885779500418}{5041} a + \frac{672641959002}{5041} \) |
\( \bigl[1\) , \( a^{2} - 2\) , \( a^{2} - 1\) , \( -11 a^{2} - 5 a + 6\) , \( 18 a^{2} + 12 a - 9\bigr] \) |
${y}^2+{x}{y}+\left(a^{2}-1\right){y}={x}^{3}+\left(a^{2}-2\right){x}^{2}+\left(-11a^{2}-5a+6\right){x}+18a^{2}+12a-9$ |
71.3-a4 |
71.3-a |
$4$ |
$10$ |
\(\Q(\zeta_{7})^+\) |
$3$ |
$[3, 0]$ |
71.3 |
\( 71 \) |
\( - 71^{10} \) |
$1.27286$ |
$(a^2-6)$ |
$0$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
✓ |
|
$2, 5$ |
2B, 5B.1.2 |
$1$ |
\( 2 \cdot 5 \) |
$1$ |
$1.644803638$ |
0.587429871 |
\( \frac{1128735985778740212430417}{3255243551009881201} a^{2} + \frac{808193592087701284035551}{3255243551009881201} a - \frac{697032567862883246911701}{3255243551009881201} \) |
\( \bigl[1\) , \( a^{2} - 2\) , \( a^{2} - 1\) , \( -221 a^{2} - 190 a + 81\) , \( -2926 a^{2} - 2384 a + 1532\bigr] \) |
${y}^2+{x}{y}+\left(a^{2}-1\right){y}={x}^{3}+\left(a^{2}-2\right){x}^{2}+\left(-221a^{2}-190a+81\right){x}-2926a^{2}-2384a+1532$ |
91.1-a1 |
91.1-a |
$8$ |
$16$ |
\(\Q(\zeta_{7})^+\) |
$3$ |
$[3, 0]$ |
91.1 |
\( 7 \cdot 13 \) |
\( 7^{16} \cdot 13^{2} \) |
$1.32661$ |
$(-a^2-a+2), (-2a^2+a+2)$ |
$0$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
✓ |
|
$2$ |
2B |
$16$ |
\( 2^{2} \) |
$1$ |
$0.284767587$ |
0.650897342 |
\( \frac{3586352161337298910516}{19882681} a^{2} - \frac{8058460190096647498093}{19882681} a + \frac{2876031146228402085760}{19882681} \) |
\( \bigl[a^{2} - 2\) , \( a^{2} - 3\) , \( 0\) , \( -1030 a^{2} + 1620 a - 484\) , \( -21769 a^{2} + 41147 a - 14213\bigr] \) |
${y}^2+\left(a^{2}-2\right){x}{y}={x}^{3}+\left(a^{2}-3\right){x}^{2}+\left(-1030a^{2}+1620a-484\right){x}-21769a^{2}+41147a-14213$ |
91.1-a2 |
91.1-a |
$8$ |
$16$ |
\(\Q(\zeta_{7})^+\) |
$3$ |
$[3, 0]$ |
91.1 |
\( 7 \cdot 13 \) |
\( 7 \cdot 13^{2} \) |
$1.32661$ |
$(-a^2-a+2), (-2a^2+a+2)$ |
$0$ |
$\Z/8\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
✓ |
|
$2$ |
2B |
$1$ |
\( 2 \) |
$1$ |
$145.8010047$ |
0.650897342 |
\( -\frac{929922096412289245}{1183} a^{2} + \frac{516067794318659937}{1183} a + \frac{2089516047340720303}{1183} \) |
\( \bigl[a^{2} - 2\) , \( a^{2} - 3\) , \( 0\) , \( 15 a^{2} + 5 a - 89\) , \( -89 a^{2} - 20 a + 385\bigr] \) |
${y}^2+\left(a^{2}-2\right){x}{y}={x}^{3}+\left(a^{2}-3\right){x}^{2}+\left(15a^{2}+5a-89\right){x}-89a^{2}-20a+385$ |
91.1-a3 |
91.1-a |
$8$ |
$16$ |
\(\Q(\zeta_{7})^+\) |
$3$ |
$[3, 0]$ |
91.1 |
\( 7 \cdot 13 \) |
\( 7^{2} \cdot 13^{4} \) |
$1.32661$ |
$(-a^2-a+2), (-2a^2+a+2)$ |
$0$ |
$\Z/2\Z\oplus\Z/8\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
✓ |
|
$2$ |
2Cs |
$1$ |
\( 2^{3} \) |
$1$ |
$145.8010047$ |
0.650897342 |
\( -\frac{3698907677516}{199927} a^{2} + \frac{293174005427}{28561} a + \frac{8312780816110}{199927} \) |
\( \bigl[a^{2} - 2\) , \( a^{2} - 3\) , \( 0\) , \( -4\) , \( -3 a^{2} - a + 9\bigr] \) |
${y}^2+\left(a^{2}-2\right){x}{y}={x}^{3}+\left(a^{2}-3\right){x}^{2}-4{x}-3a^{2}-a+9$ |
91.1-a4 |
91.1-a |
$8$ |
$16$ |
\(\Q(\zeta_{7})^+\) |
$3$ |
$[3, 0]$ |
91.1 |
\( 7 \cdot 13 \) |
\( 7^{4} \cdot 13^{8} \) |
$1.32661$ |
$(-a^2-a+2), (-2a^2+a+2)$ |
$0$ |
$\Z/2\Z\oplus\Z/4\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
✓ |
|
$2$ |
2Cs |
$1$ |
\( 2^{4} \) |
$1$ |
$18.22512558$ |
0.650897342 |
\( \frac{20917603896641523}{39970805329} a^{2} + \frac{16797981605493841}{39970805329} a - \frac{11327303846528113}{39970805329} \) |
\( \bigl[a^{2} - 2\) , \( a^{2} - 3\) , \( 0\) , \( -15 a^{2} - 5 a + 1\) , \( -49 a^{2} - 26 a + 29\bigr] \) |
${y}^2+\left(a^{2}-2\right){x}{y}={x}^{3}+\left(a^{2}-3\right){x}^{2}+\left(-15a^{2}-5a+1\right){x}-49a^{2}-26a+29$ |
91.1-a5 |
91.1-a |
$8$ |
$16$ |
\(\Q(\zeta_{7})^+\) |
$3$ |
$[3, 0]$ |
91.1 |
\( 7 \cdot 13 \) |
\( - 7 \cdot 13^{2} \) |
$1.32661$ |
$(-a^2-a+2), (-2a^2+a+2)$ |
$0$ |
$\Z/8\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
✓ |
|
$2$ |
2B |
$1$ |
\( 2 \) |
$1$ |
$145.8010047$ |
0.650897342 |
\( \frac{3379823}{1183} a^{2} - \frac{1448892}{1183} a - \frac{6890188}{1183} \) |
\( \bigl[a^{2} - 2\) , \( a^{2} - 3\) , \( 0\) , \( 1\) , \( 0\bigr] \) |
${y}^2+\left(a^{2}-2\right){x}{y}={x}^{3}+\left(a^{2}-3\right){x}^{2}+{x}$ |
91.1-a6 |
91.1-a |
$8$ |
$16$ |
\(\Q(\zeta_{7})^+\) |
$3$ |
$[3, 0]$ |
91.1 |
\( 7 \cdot 13 \) |
\( - 7^{2} \cdot 13^{16} \) |
$1.32661$ |
$(-a^2-a+2), (-2a^2+a+2)$ |
$0$ |
$\Z/4\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
✓ |
|
$2$ |
2B |
$1$ |
\( 2^{5} \) |
$1$ |
$2.278140698$ |
0.650897342 |
\( -\frac{1202964810122504163047}{4657916264282258887} a^{2} - \frac{166312704815995127056}{665416609183179841} a + \frac{2026661189545263268136}{4657916264282258887} \) |
\( \bigl[a^{2} - 2\) , \( a^{2} - 3\) , \( 0\) , \( -10 a^{2} - 20 a + 21\) , \( -90 a^{2} + 20 a + 26\bigr] \) |
${y}^2+\left(a^{2}-2\right){x}{y}={x}^{3}+\left(a^{2}-3\right){x}^{2}+\left(-10a^{2}-20a+21\right){x}-90a^{2}+20a+26$ |
*The rank, regulator and analytic order of Ш are
not known for all curves in the database; curves for which these are
unknown will not appear in searches specifying one of these
quantities.