Properties

Label 3.3.49.1-2009.3-d5
Base field \(\Q(\zeta_{7})^+\)
Conductor norm \( 2009 \)
CM no
Base change no
Q-curve no
Torsion order \( 4 \)
Rank \( 0 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field \(\Q(\zeta_{7})^+\)

Generator \(a\), with minimal polynomial \( x^{3} - x^{2} - 2 x + 1 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([1, -2, -1, 1]))
 
gp: K = nfinit(Polrev([1, -2, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, -2, -1, 1]);
 

Weierstrass equation

\({y}^2+\left(a^{2}+a-1\right){x}{y}={x}^{3}+\left(-131a^{2}-99a+3\right){x}+1047a^{2}+1119a-495\)
sage: E = EllipticCurve([K([-1,1,1]),K([0,0,0]),K([0,0,0]),K([3,-99,-131]),K([-495,1119,1047])])
 
gp: E = ellinit([Polrev([-1,1,1]),Polrev([0,0,0]),Polrev([0,0,0]),Polrev([3,-99,-131]),Polrev([-495,1119,1047])], K);
 
magma: E := EllipticCurve([K![-1,1,1],K![0,0,0],K![0,0,0],K![3,-99,-131],K![-495,1119,1047]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((6a^2-11a-11)\) = \((-a^2-a+2)^{2}\cdot(3a^2-a-3)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 2009 \) = \(7^{2}\cdot41\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((84378a^2-60025a-97412)\) = \((-a^2-a+2)^{10}\cdot(3a^2-a-3)^{4}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 798207542089489 \) = \(7^{10}\cdot41^{4}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( \frac{2192037233085291}{138462289} a^{2} + \frac{2267219548655833}{138462289} a - \frac{566434328572957}{138462289} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(0\)
Torsion structure: \(\Z/2\Z\oplus\Z/2\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generators: $\left(6 a + 2 : -7 a^{2} - 4 a + 4 : 1\right)$ $\left(3 a^{2} - \frac{3}{4} a + \frac{9}{2} : -6 a^{2} - \frac{51}{8} a + \frac{39}{8} : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 0 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(0\)
Regulator: \( 1 \)
Period: \( 18.632100729647382207391493339318700474 \)
Tamagawa product: \( 8 \)  =  \(2^{2}\cdot2\)
Torsion order: \(4\)
Leading coefficient: \( 1.3308643378319558719565352385227643196 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((-a^2-a+2)\) \(7\) \(4\) \(I_{4}^{*}\) Additive \(-1\) \(2\) \(10\) \(4\)
\((3a^2-a-3)\) \(41\) \(2\) \(I_{4}\) Non-split multiplicative \(1\) \(1\) \(4\) \(4\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2Cs

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2 and 4.
Its isogeny class 2009.3-d consists of curves linked by isogenies of degrees dividing 8.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.