Properties

Label 3.3.316.1-128.7-b2
Base field 3.3.316.1
Conductor norm \( 128 \)
CM no
Base change no
Q-curve no
Torsion order \( 2 \)
Rank \( 0 \)

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Base field 3.3.316.1

Generator \(a\), with minimal polynomial \( x^{3} - x^{2} - 4 x + 2 \); class number \(1\).

Copy content comment:Define the base number field
 
Copy content sage:R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([2, -4, -1, 1]))
 
Copy content gp:K = nfinit(Polrev([2, -4, -1, 1]));
 
Copy content magma:R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![2, -4, -1, 1]);
 

Weierstrass equation

\({y}^2+\left(a^{2}-3\right){x}{y}+\left(a^{2}-3\right){y}={x}^{3}+\left(-a^{2}-a+4\right){x}^{2}+\left(34420a^{2}-18220a-146255\right){x}-5017146a^{2}+2655658a+21318558\)
Copy content comment:Define the curve
 
Copy content sage:E = EllipticCurve([K([-3,0,1]),K([4,-1,-1]),K([-3,0,1]),K([-146255,-18220,34420]),K([21318558,2655658,-5017146])])
 
Copy content gp:E = ellinit([Polrev([-3,0,1]),Polrev([4,-1,-1]),Polrev([-3,0,1]),Polrev([-146255,-18220,34420]),Polrev([21318558,2655658,-5017146])], K);
 
Copy content magma:E := EllipticCurve([K![-3,0,1],K![4,-1,-1],K![-3,0,1],K![-146255,-18220,34420],K![21318558,2655658,-5017146]]);
 

This is a global minimal model.

Copy content comment:Test whether it is a global minimal model
 
Copy content sage:E.is_global_minimal_model()
 

Mordell-Weil group structure

\(\Z/{2}\Z\)

Mordell-Weil generators

$P$$\hat{h}(P)$Order
$\left(-\frac{211}{4} a^{2} + \frac{57}{2} a + \frac{897}{4} : -\frac{593}{8} a^{2} + \frac{77}{2} a + \frac{2509}{8} : 1\right)$$0$$2$

Invariants

Conductor: $\frak{N}$ = \((-3a^2-a+6)\) = \((a)\cdot(-a+1)^{6}\)
Copy content comment:Compute the conductor
 
Copy content sage:E.conductor()
 
Copy content gp:ellglobalred(E)[1]
 
Copy content magma:Conductor(E);
 
Conductor norm: $N(\frak{N})$ = \( 128 \) = \(2\cdot2^{6}\)
Copy content comment:Compute the norm of the conductor
 
Copy content sage:E.conductor().norm()
 
Copy content gp:idealnorm(ellglobalred(E)[1])
 
Copy content magma:Norm(Conductor(E));
 
Discriminant: $\Delta$ = $3a^2-11a-2$
Discriminant ideal: $\frak{D}_{\mathrm{min}} = (\Delta)$ = \((3a^2-11a-2)\) = \((a)\cdot(-a+1)^{10}\)
Copy content comment:Compute the discriminant
 
Copy content sage:E.discriminant()
 
Copy content gp:E.disc
 
Copy content magma:Discriminant(E);
 
Discriminant norm: $N(\frak{D}_{\mathrm{min}}) = N(\Delta)$ = \( 2048 \) = \(2\cdot2^{10}\)
Copy content comment:Compute the norm of the discriminant
 
Copy content sage:E.discriminant().norm()
 
Copy content gp:norm(E.disc)
 
Copy content magma:Norm(Discriminant(E));
 
j-invariant: $j$ = \( \frac{112062878879}{2} a^{2} - \frac{315301616071}{2} a + 61790982411 \)
Copy content comment:Compute the j-invariant
 
Copy content sage:E.j_invariant()
 
Copy content gp:E.j
 
Copy content magma:jInvariant(E);
 
Endomorphism ring: $\mathrm{End}(E)$ = \(\Z\)   
Geometric endomorphism ring: $\mathrm{End}(E_{\overline{\Q}})$ = \(\Z\)    (no potential complex multiplication)
Copy content comment:Test for Complex Multiplication
 
Copy content sage:E.has_cm(), E.cm_discriminant()
 
Copy content magma:HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{ST}(E)$ = $\mathrm{SU}(2)$

BSD invariants

Analytic rank: $r_{\mathrm{an}}$= \( 0 \)
Copy content comment:Compute the Mordell-Weil rank
 
Copy content sage:E.rank()
 
Copy content magma:Rank(E);
 
Mordell-Weil rank: $r$ = \(0\)
Regulator: $\mathrm{Reg}(E/K)$ = \( 1 \)
Néron-Tate Regulator: $\mathrm{Reg}_{\mathrm{NT}}(E/K)$ = \( 1 \)
Global period: $\Omega(E/K)$ \( 38.230730870809551809417497148659107046 \)
Tamagawa product: $\prod_{\frak{p}}c_{\frak{p}}$= \( 2 \)  =  \(1\cdot2\)
Torsion order: $\#E(K)_{\mathrm{tor}}$= \(2\)
Special value: $L^{(r)}(E/K,1)/r!$ \( 1.0753233186576715160013006749566511980 \)
Analytic order of Ш: Ш${}_{\mathrm{an}}$= \( 1 \) (rounded)

BSD formula

$$\begin{aligned}1.075323319 \approx L(E/K,1) & \overset{?}{=} \frac{ \# ะจ(E/K) \cdot \Omega(E/K) \cdot \mathrm{Reg}_{\mathrm{NT}}(E/K) \cdot \prod_{\mathfrak{p}} c_{\mathfrak{p}} } { \#E(K)_{\mathrm{tor}}^2 \cdot \left|d_K\right|^{1/2} } \\ & \approx \frac{ 1 \cdot 38.230731 \cdot 1 \cdot 2 } { {2^2 \cdot 17.776389} } \\ & \approx 1.075323319 \end{aligned}$$

Local data at primes of bad reduction

Copy content comment:Compute the local reduction data at primes of bad reduction
 
Copy content sage:E.local_data()
 
Copy content magma:LocalInformation(E);
 

This elliptic curve is not semistable. There are 2 primes $\frak{p}$ of bad reduction.

$\mathfrak{p}$ $N(\mathfrak{p})$ Tamagawa number Kodaira symbol Reduction type Root number \(\mathrm{ord}_{\mathfrak{p}}(\mathfrak{N}\)) \(\mathrm{ord}_{\mathfrak{p}}(\mathfrak{D}_{\mathrm{min}}\)) \(\mathrm{ord}_{\mathfrak{p}}(\mathrm{den}(j))\)
\((a)\) \(2\) \(1\) \(I_{1}\) Non-split multiplicative \(1\) \(1\) \(1\) \(1\)
\((-a+1)\) \(2\) \(2\) \(I_0^{*}\) Additive \(-1\) \(6\) \(10\) \(0\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2 and 4.
Its isogeny class 128.7-b consists of curves linked by isogenies of degrees dividing 4.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.