Properties

Label 3.3.316.1-128.7-b
Base field 3.3.316.1
Weight $[2, 2, 2]$
Level norm $128$
Level $[128, 64, -3 w^2 - w + 6]$
Dimension $1$
CM no
Base change no

Related objects

Downloads

Learn more

Base field 3.3.316.1

Generator \(w\), with minimal polynomial \(x^3 - x^2 - 4 x + 2\); narrow class number \(1\) and class number \(1\).

Form

Weight: $[2, 2, 2]$
Level: $[128, 64, -3 w^2 - w + 6]$
Dimension: $1$
CM: no
Base change: no
Newspace dimension: $8$

Hecke eigenvalues ($q$-expansion)

The Hecke eigenvalue field is $\Q$.
Norm Prime Eigenvalue
2 $[2, 2, -w]$ $-1$
2 $[2, 2, w - 1]$ $\phantom{-}0$
11 $[11, 11, w^2 - w - 1]$ $\phantom{-}0$
17 $[17, 17, -w^2 - w + 3]$ $-2$
19 $[19, 19, w^2 - w + 1]$ $\phantom{-}0$
23 $[23, 23, 2 w - 3]$ $\phantom{-}4$
27 $[27, 3, 3]$ $\phantom{-}8$
29 $[29, 29, 2 w + 1]$ $-2$
31 $[31, 31, 2 w^2 - 2 w - 9]$ $\phantom{-}4$
37 $[37, 37, 2 w^2 - 2 w - 5]$ $-6$
41 $[41, 41, 2 w^2 - 9]$ $\phantom{-}6$
43 $[43, 43, w^2 + w - 5]$ $-8$
43 $[43, 43, -3 w^2 + w + 15]$ $\phantom{-}12$
43 $[43, 43, -2 w^2 + 2 w + 11]$ $\phantom{-}4$
53 $[53, 53, w^2 - w - 7]$ $\phantom{-}6$
61 $[61, 61, 4 w^2 - 2 w - 15]$ $\phantom{-}2$
67 $[67, 67, -5 w^2 + 3 w + 23]$ $-12$
73 $[73, 73, 2 w^2 - 3]$ $\phantom{-}6$
73 $[73, 73, -3 w^2 - w + 7]$ $-10$
73 $[73, 73, -6 w^2 + 4 w + 25]$ $-6$
Display number of eigenvalues

Atkin-Lehner eigenvalues

Norm Prime Eigenvalue
$2$ $[2, 2, -w]$ $1$
$2$ $[2, 2, w - 1]$ $-1$