Learn more

Refine search


Results (20 matches)

  displayed columns for results
Label Class Base field Conductor norm Rank Torsion CM Sato-Tate Regulator Period Leading coeff j-invariant Weierstrass coefficients Weierstrass equation
128.7-a1 128.7-a 3.3.316.1 \( 2^{7} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.109884051$ $26.65027186$ 3.706596283 \( \frac{10610687801034935261}{256} a^{2} - \frac{29854300194558708471}{256} a + \frac{1462650220091725987}{32} \) \( \bigl[a^{2} - 3\) , \( -a - 1\) , \( a^{2} - 3\) , \( -147 a^{2} + 585 a - 567\) , \( 3709 a^{2} - 10808 a + 4961\bigr] \) ${y}^2+\left(a^{2}-3\right){x}{y}+\left(a^{2}-3\right){y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(-147a^{2}+585a-567\right){x}+3709a^{2}-10808a+4961$
128.7-a2 128.7-a 3.3.316.1 \( 2^{7} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.036628017$ $239.8524467$ 3.706596283 \( -\frac{1780690961}{8} a^{2} + \frac{941301753}{8} a + \frac{3785006083}{4} \) \( \bigl[a^{2} - 3\) , \( -a - 1\) , \( a^{2} - 3\) , \( 58 a^{2} - 25 a - 262\) , \( -357 a^{2} + 178 a + 1541\bigr] \) ${y}^2+\left(a^{2}-3\right){x}{y}+\left(a^{2}-3\right){y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(58a^{2}-25a-262\right){x}-357a^{2}+178a+1541$
128.7-a3 128.7-a 3.3.316.1 \( 2^{7} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.054942025$ $13.32513593$ 3.706596283 \( -\frac{541255732825}{8192} a^{2} + \frac{6091495909813}{32768} a - \frac{2387470670643}{32768} \) \( \bigl[a + 1\) , \( 1\) , \( a^{2} - 3\) , \( -873 a^{2} + 2452 a - 952\) , \( 30154 a^{2} - 84843 a + 33257\bigr] \) ${y}^2+\left(a+1\right){x}{y}+\left(a^{2}-3\right){y}={x}^{3}+{x}^{2}+\left(-873a^{2}+2452a-952\right){x}+30154a^{2}-84843a+33257$
128.7-a4 128.7-a 3.3.316.1 \( 2^{7} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.018314008$ $119.9262233$ 3.706596283 \( \frac{56079}{8} a^{2} - \frac{116333}{32} a - \frac{958845}{32} \) \( \bigl[a + 1\) , \( 1\) , \( a^{2} - 3\) , \( -8 a^{2} + 22 a - 7\) , \( 63 a^{2} - 176 a + 67\bigr] \) ${y}^2+\left(a+1\right){x}{y}+\left(a^{2}-3\right){y}={x}^{3}+{x}^{2}+\left(-8a^{2}+22a-7\right){x}+63a^{2}-176a+67$
128.7-b1 128.7-b 3.3.316.1 \( 2^{7} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $19.11536543$ 1.075323318 \( -\frac{3655}{4} a^{2} - \frac{775}{2} a + \frac{7961}{4} \) \( \bigl[a^{2} - 3\) , \( a^{2} - a - 3\) , \( 0\) , \( -4 a^{2} + 2 a + 18\) , \( 0\bigr] \) ${y}^2+\left(a^{2}-3\right){x}{y}={x}^{3}+\left(a^{2}-a-3\right){x}^{2}+\left(-4a^{2}+2a+18\right){x}$
128.7-b2 128.7-b 3.3.316.1 \( 2^{7} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $38.23073087$ 1.075323318 \( \frac{112062878879}{2} a^{2} - \frac{315301616071}{2} a + 61790982411 \) \( \bigl[a^{2} - 3\) , \( -a^{2} - a + 4\) , \( a^{2} - 3\) , \( 34420 a^{2} - 18220 a - 146255\) , \( -5017146 a^{2} + 2655658 a + 21318558\bigr] \) ${y}^2+\left(a^{2}-3\right){x}{y}+\left(a^{2}-3\right){y}={x}^{3}+\left(-a^{2}-a+4\right){x}^{2}+\left(34420a^{2}-18220a-146255\right){x}-5017146a^{2}+2655658a+21318558$
128.7-b3 128.7-b 3.3.316.1 \( 2^{7} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $9.557682717$ 1.075323318 \( \frac{118715864416425}{2} a^{2} + \frac{159426274721303}{2} a - 50669979335827 \) \( \bigl[a + 1\) , \( a^{2} - a - 2\) , \( a + 1\) , \( 2032 a^{2} - 1081 a - 8641\) , \( 71339 a^{2} - 37775 a - 303154\bigr] \) ${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+\left(a^{2}-a-2\right){x}^{2}+\left(2032a^{2}-1081a-8641\right){x}+71339a^{2}-37775a-303154$
128.7-b4 128.7-b 3.3.316.1 \( 2^{7} \) 0 $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $38.23073087$ 1.075323318 \( 2838366 a^{2} + \frac{6985779}{2} a - \frac{4542013}{2} \) \( \bigl[a + 1\) , \( a^{2} - a - 2\) , \( a + 1\) , \( 217 a^{2} - 116 a - 921\) , \( -797 a^{2} + 421 a + 3386\bigr] \) ${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+\left(a^{2}-a-2\right){x}^{2}+\left(217a^{2}-116a-921\right){x}-797a^{2}+421a+3386$
128.7-c1 128.7-c 3.3.316.1 \( 2^{7} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $93.82891037$ 2.639144295 \( -1346 a^{2} + \frac{7699}{2} a - \frac{3261}{2} \) \( \bigl[a^{2} - 3\) , \( -a^{2} - a + 3\) , \( a + 1\) , \( -2 a^{2} + a + 8\) , \( 10 a^{2} + 15 a - 7\bigr] \) ${y}^2+\left(a^{2}-3\right){x}{y}+\left(a+1\right){y}={x}^{3}+\left(-a^{2}-a+3\right){x}^{2}+\left(-2a^{2}+a+8\right){x}+10a^{2}+15a-7$
128.7-c2 128.7-c 3.3.316.1 \( 2^{7} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $93.82891037$ 2.639144295 \( \frac{39790591}{2} a^{2} - \frac{112259079}{2} a + 22350587 \) \( \bigl[a^{2} - 3\) , \( -a^{2} - a + 3\) , \( a + 1\) , \( -42 a^{2} - 44 a + 38\) , \( 282 a^{2} + 401 a - 249\bigr] \) ${y}^2+\left(a^{2}-3\right){x}{y}+\left(a+1\right){y}={x}^{3}+\left(-a^{2}-a+3\right){x}^{2}+\left(-42a^{2}-44a+38\right){x}+282a^{2}+401a-249$
128.7-d1 128.7-d 3.3.316.1 \( 2^{7} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $81.04344650$ 2.279525027 \( -1346 a^{2} + \frac{7699}{2} a - \frac{3261}{2} \) \( \bigl[a + 1\) , \( a^{2} - 2\) , \( a^{2} + a - 2\) , \( a + 1\) , \( -11 a^{2} - 15 a + 9\bigr] \) ${y}^2+\left(a+1\right){x}{y}+\left(a^{2}+a-2\right){y}={x}^{3}+\left(a^{2}-2\right){x}^{2}+\left(a+1\right){x}-11a^{2}-15a+9$
128.7-d2 128.7-d 3.3.316.1 \( 2^{7} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $81.04344650$ 2.279525027 \( \frac{39790591}{2} a^{2} - \frac{112259079}{2} a + 22350587 \) \( \bigl[a + 1\) , \( a^{2} - 2\) , \( a^{2} + a - 2\) , \( -40 a^{2} - 44 a + 31\) , \( -323 a^{2} - 446 a + 281\bigr] \) ${y}^2+\left(a+1\right){x}{y}+\left(a^{2}+a-2\right){y}={x}^{3}+\left(a^{2}-2\right){x}^{2}+\left(-40a^{2}-44a+31\right){x}-323a^{2}-446a+281$
128.7-e1 128.7-e 3.3.316.1 \( 2^{7} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.229099761$ $102.7552442$ 1.986444107 \( \frac{118715864416425}{2} a^{2} + \frac{159426274721303}{2} a - 50669979335827 \) \( \bigl[a^{2} - 3\) , \( -a^{2} + 3\) , \( 0\) , \( 2030 a^{2} - 1079 a - 8634\) , \( -69308 a^{2} + 36695 a + 294516\bigr] \) ${y}^2+\left(a^{2}-3\right){x}{y}={x}^{3}+\left(-a^{2}+3\right){x}^{2}+\left(2030a^{2}-1079a-8634\right){x}-69308a^{2}+36695a+294516$
128.7-e2 128.7-e 3.3.316.1 \( 2^{7} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $0.114549880$ $205.5104884$ 1.986444107 \( 2838366 a^{2} + \frac{6985779}{2} a - \frac{4542013}{2} \) \( \bigl[a^{2} - 3\) , \( -a^{2} + 3\) , \( 0\) , \( 215 a^{2} - 114 a - 914\) , \( 1013 a^{2} - 536 a - 4304\bigr] \) ${y}^2+\left(a^{2}-3\right){x}{y}={x}^{3}+\left(-a^{2}+3\right){x}^{2}+\left(215a^{2}-114a-914\right){x}+1013a^{2}-536a-4304$
128.7-e3 128.7-e 3.3.316.1 \( 2^{7} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.229099761$ $102.7552442$ 1.986444107 \( \frac{112062878879}{2} a^{2} - \frac{315301616071}{2} a + 61790982411 \) \( \bigl[a + 1\) , \( a^{2} - 3\) , \( 0\) , \( 34422 a^{2} - 18218 a - 146260\) , \( 5051567 a^{2} - 2673877 a - 21464816\bigr] \) ${y}^2+\left(a+1\right){x}{y}={x}^{3}+\left(a^{2}-3\right){x}^{2}+\left(34422a^{2}-18218a-146260\right){x}+5051567a^{2}-2673877a-21464816$
128.7-e4 128.7-e 3.3.316.1 \( 2^{7} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.057274940$ $102.7552442$ 1.986444107 \( -\frac{3655}{4} a^{2} - \frac{775}{2} a + \frac{7961}{4} \) \( \bigl[a + 1\) , \( -a^{2} + 4\) , \( a + 1\) , \( -6 a^{2} + 2 a + 23\) , \( -5 a^{2} + 2 a + 20\bigr] \) ${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+\left(-a^{2}+4\right){x}^{2}+\left(-6a^{2}+2a+23\right){x}-5a^{2}+2a+20$
128.7-f1 128.7-f 3.3.316.1 \( 2^{7} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $3.130107050$ 2.641234178 \( -\frac{541255732825}{8192} a^{2} + \frac{6091495909813}{32768} a - \frac{2387470670643}{32768} \) \( \bigl[a^{2} - 3\) , \( -a\) , \( a^{2} + a - 2\) , \( -873 a^{2} + 2450 a - 955\) , \( -31027 a^{2} + 87293 a - 34213\bigr] \) ${y}^2+\left(a^{2}-3\right){x}{y}+\left(a^{2}+a-2\right){y}={x}^{3}-a{x}^{2}+\left(-873a^{2}+2450a-955\right){x}-31027a^{2}+87293a-34213$
128.7-f2 128.7-f 3.3.316.1 \( 2^{7} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $9.390321152$ 2.641234178 \( \frac{56079}{8} a^{2} - \frac{116333}{32} a - \frac{958845}{32} \) \( \bigl[a^{2} - 3\) , \( -a\) , \( a^{2} + a - 2\) , \( -8 a^{2} + 20 a - 10\) , \( -71 a^{2} + 196 a - 78\bigr] \) ${y}^2+\left(a^{2}-3\right){x}{y}+\left(a^{2}+a-2\right){y}={x}^{3}-a{x}^{2}+\left(-8a^{2}+20a-10\right){x}-71a^{2}+196a-78$
128.7-f3 128.7-f 3.3.316.1 \( 2^{7} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $6.260214101$ 2.641234178 \( \frac{10610687801034935261}{256} a^{2} - \frac{29854300194558708471}{256} a + \frac{1462650220091725987}{32} \) \( \bigl[a + 1\) , \( -1\) , \( a + 1\) , \( -148 a^{2} + 585 a - 564\) , \( -3709 a^{2} + 10807 a - 4963\bigr] \) ${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}-{x}^{2}+\left(-148a^{2}+585a-564\right){x}-3709a^{2}+10807a-4963$
128.7-f4 128.7-f 3.3.316.1 \( 2^{7} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $18.78064230$ 2.641234178 \( -\frac{1780690961}{8} a^{2} + \frac{941301753}{8} a + \frac{3785006083}{4} \) \( \bigl[a + 1\) , \( -1\) , \( a + 1\) , \( 57 a^{2} - 25 a - 259\) , \( 357 a^{2} - 179 a - 1543\bigr] \) ${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}-{x}^{2}+\left(57a^{2}-25a-259\right){x}+357a^{2}-179a-1543$
  displayed columns for results

  *The rank, regulator and analytic order of Ш are not known for all curves in the database; curves for which these are unknown will not appear in searches specifying one of these quantities.