Base field 3.3.316.1
Generator \(a\), with minimal polynomial \( x^{3} - x^{2} - 4 x + 2 \); class number \(1\).
Weierstrass equation
This is a global minimal model.
Mordell-Weil group structure
\(\Z \oplus \Z/{2}\Z \oplus \Z/{2}\Z\)
Mordell-Weil generators
| $P$ | $\hat{h}(P)$ | Order |
|---|---|---|
| $\left(-9 a^{2} + 5 a + 39 : 26 a^{2} - 14 a - 111 : 1\right)$ | $0.11454988054233569915901990825089201930$ | $\infty$ |
| $\left(7 a^{2} - 4 a - 30 : 10 a^{2} - 5 a - 42 : 1\right)$ | $0$ | $2$ |
| $\left(\frac{5}{4} a^{2} - \frac{1}{2} a - \frac{19}{4} : \frac{11}{8} a^{2} - a - \frac{51}{8} : 1\right)$ | $0$ | $2$ |
Invariants
| Conductor: | $\frak{N}$ | = | \((-3a^2-a+6)\) | = | \((a)\cdot(-a+1)^{6}\) |
|
| |||||
| Conductor norm: | $N(\frak{N})$ | = | \( 128 \) | = | \(2\cdot2^{6}\) |
|
| |||||
| Discriminant: | $\Delta$ | = | $18a^2-16a-18$ | ||
| Discriminant ideal: | $\frak{D}_{\mathrm{min}} = (\Delta)$ | = | \((18a^2-16a-18)\) | = | \((a)^{2}\cdot(-a+1)^{14}\) |
|
| |||||
| Discriminant norm: | $N(\frak{D}_{\mathrm{min}}) = N(\Delta)$ | = | \( 65536 \) | = | \(2^{2}\cdot2^{14}\) |
|
| |||||
| j-invariant: | $j$ | = | \( 2838366 a^{2} + \frac{6985779}{2} a - \frac{4542013}{2} \) | ||
|
| |||||
| Endomorphism ring: | $\mathrm{End}(E)$ | = | \(\Z\) | ||
| Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) | ||
|
| |||||
| Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | ||
BSD invariants
| Analytic rank: | $r_{\mathrm{an}}$ | = | \( 1 \) |
|
|
|||
| Mordell-Weil rank: | $r$ | = | \(1\) |
| Regulator: | $\mathrm{Reg}(E/K)$ | ≈ | \( 0.11454988054233569915901990825089201930 \) |
| Néron-Tate Regulator: | $\mathrm{Reg}_{\mathrm{NT}}(E/K)$ | ≈ | \( 0.343649641627007097477059724752676057900 \) |
| Global period: | $\Omega(E/K)$ | ≈ | \( 205.51048848635769915634217762752029226 \) |
| Tamagawa product: | $\prod_{\frak{p}}c_{\frak{p}}$ | = | \( 8 \) = \(2\cdot2^{2}\) |
| Torsion order: | $\#E(K)_{\mathrm{tor}}$ | = | \(4\) |
| Special value: | $L^{(r)}(E/K,1)/r!$ | ≈ | \( 1.9864441078533957869576533208794222189 \) |
| Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | = | \( 1 \) (rounded) |
BSD formula
$$\begin{aligned}1.986444108 \approx L'(E/K,1) & \overset{?}{=} \frac{ \# ะจ(E/K) \cdot \Omega(E/K) \cdot \mathrm{Reg}_{\mathrm{NT}}(E/K) \cdot \prod_{\mathfrak{p}} c_{\mathfrak{p}} } { \#E(K)_{\mathrm{tor}}^2 \cdot \left|d_K\right|^{1/2} } \\ & \approx \frac{ 1 \cdot 205.510488 \cdot 0.343650 \cdot 8 } { {4^2 \cdot 17.776389} } \\ & \approx 1.986444108 \end{aligned}$$
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 2 primes $\frak{p}$ of bad reduction.
| $\mathfrak{p}$ | $N(\mathfrak{p})$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | \(\mathrm{ord}_{\mathfrak{p}}(\mathfrak{N}\)) | \(\mathrm{ord}_{\mathfrak{p}}(\mathfrak{D}_{\mathrm{min}}\)) | \(\mathrm{ord}_{\mathfrak{p}}(\mathrm{den}(j))\) |
|---|---|---|---|---|---|---|---|---|
| \((a)\) | \(2\) | \(2\) | \(I_{2}\) | Non-split multiplicative | \(1\) | \(1\) | \(2\) | \(2\) |
| \((-a+1)\) | \(2\) | \(4\) | \(I_{4}^{*}\) | Additive | \(1\) | \(6\) | \(14\) | \(0\) |
Galois Representations
The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.
| prime | Image of Galois Representation |
|---|---|
| \(2\) | 2Cs |
Isogenies and isogeny class
This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\)
2.
Its isogeny class
128.7-e
consists of curves linked by isogenies of
degrees dividing 4.
Base change
This elliptic curve is not a \(\Q\)-curve.
It is not the base change of an elliptic curve defined over any subfield.