Properties

Label 3.3.316.1-128.7-e2
Base field 3.3.316.1
Conductor norm \( 128 \)
CM no
Base change no
Q-curve no
Torsion order \( 4 \)
Rank \( 1 \)

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Base field 3.3.316.1

Generator \(a\), with minimal polynomial \( x^{3} - x^{2} - 4 x + 2 \); class number \(1\).

Copy content comment:Define the base number field
 
Copy content sage:R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([2, -4, -1, 1]))
 
Copy content gp:K = nfinit(Polrev([2, -4, -1, 1]));
 
Copy content magma:R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![2, -4, -1, 1]);
 

Weierstrass equation

\({y}^2+\left(a^{2}-3\right){x}{y}={x}^{3}+\left(-a^{2}+3\right){x}^{2}+\left(215a^{2}-114a-914\right){x}+1013a^{2}-536a-4304\)
Copy content comment:Define the curve
 
Copy content sage:E = EllipticCurve([K([-3,0,1]),K([3,0,-1]),K([0,0,0]),K([-914,-114,215]),K([-4304,-536,1013])])
 
Copy content gp:E = ellinit([Polrev([-3,0,1]),Polrev([3,0,-1]),Polrev([0,0,0]),Polrev([-914,-114,215]),Polrev([-4304,-536,1013])], K);
 
Copy content magma:E := EllipticCurve([K![-3,0,1],K![3,0,-1],K![0,0,0],K![-914,-114,215],K![-4304,-536,1013]]);
 

This is a global minimal model.

Copy content comment:Test whether it is a global minimal model
 
Copy content sage:E.is_global_minimal_model()
 

Mordell-Weil group structure

\(\Z \oplus \Z/{2}\Z \oplus \Z/{2}\Z\)

Mordell-Weil generators

$P$$\hat{h}(P)$Order
$\left(-9 a^{2} + 5 a + 39 : 26 a^{2} - 14 a - 111 : 1\right)$$0.11454988054233569915901990825089201930$$\infty$
$\left(7 a^{2} - 4 a - 30 : 10 a^{2} - 5 a - 42 : 1\right)$$0$$2$
$\left(\frac{5}{4} a^{2} - \frac{1}{2} a - \frac{19}{4} : \frac{11}{8} a^{2} - a - \frac{51}{8} : 1\right)$$0$$2$

Invariants

Conductor: $\frak{N}$ = \((-3a^2-a+6)\) = \((a)\cdot(-a+1)^{6}\)
Copy content comment:Compute the conductor
 
Copy content sage:E.conductor()
 
Copy content gp:ellglobalred(E)[1]
 
Copy content magma:Conductor(E);
 
Conductor norm: $N(\frak{N})$ = \( 128 \) = \(2\cdot2^{6}\)
Copy content comment:Compute the norm of the conductor
 
Copy content sage:E.conductor().norm()
 
Copy content gp:idealnorm(ellglobalred(E)[1])
 
Copy content magma:Norm(Conductor(E));
 
Discriminant: $\Delta$ = $18a^2-16a-18$
Discriminant ideal: $\frak{D}_{\mathrm{min}} = (\Delta)$ = \((18a^2-16a-18)\) = \((a)^{2}\cdot(-a+1)^{14}\)
Copy content comment:Compute the discriminant
 
Copy content sage:E.discriminant()
 
Copy content gp:E.disc
 
Copy content magma:Discriminant(E);
 
Discriminant norm: $N(\frak{D}_{\mathrm{min}}) = N(\Delta)$ = \( 65536 \) = \(2^{2}\cdot2^{14}\)
Copy content comment:Compute the norm of the discriminant
 
Copy content sage:E.discriminant().norm()
 
Copy content gp:norm(E.disc)
 
Copy content magma:Norm(Discriminant(E));
 
j-invariant: $j$ = \( 2838366 a^{2} + \frac{6985779}{2} a - \frac{4542013}{2} \)
Copy content comment:Compute the j-invariant
 
Copy content sage:E.j_invariant()
 
Copy content gp:E.j
 
Copy content magma:jInvariant(E);
 
Endomorphism ring: $\mathrm{End}(E)$ = \(\Z\)   
Geometric endomorphism ring: $\mathrm{End}(E_{\overline{\Q}})$ = \(\Z\)    (no potential complex multiplication)
Copy content comment:Test for Complex Multiplication
 
Copy content sage:E.has_cm(), E.cm_discriminant()
 
Copy content magma:HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{ST}(E)$ = $\mathrm{SU}(2)$

BSD invariants

Analytic rank: $r_{\mathrm{an}}$= \( 1 \)
Copy content comment:Compute the Mordell-Weil rank
 
Copy content sage:E.rank()
 
Copy content magma:Rank(E);
 
Mordell-Weil rank: $r$ = \(1\)
Regulator: $\mathrm{Reg}(E/K)$ \( 0.11454988054233569915901990825089201930 \)
Néron-Tate Regulator: $\mathrm{Reg}_{\mathrm{NT}}(E/K)$ \( 0.343649641627007097477059724752676057900 \)
Global period: $\Omega(E/K)$ \( 205.51048848635769915634217762752029226 \)
Tamagawa product: $\prod_{\frak{p}}c_{\frak{p}}$= \( 8 \)  =  \(2\cdot2^{2}\)
Torsion order: $\#E(K)_{\mathrm{tor}}$= \(4\)
Special value: $L^{(r)}(E/K,1)/r!$ \( 1.9864441078533957869576533208794222189 \)
Analytic order of Ш: Ш${}_{\mathrm{an}}$= \( 1 \) (rounded)

BSD formula

$$\begin{aligned}1.986444108 \approx L'(E/K,1) & \overset{?}{=} \frac{ \# ะจ(E/K) \cdot \Omega(E/K) \cdot \mathrm{Reg}_{\mathrm{NT}}(E/K) \cdot \prod_{\mathfrak{p}} c_{\mathfrak{p}} } { \#E(K)_{\mathrm{tor}}^2 \cdot \left|d_K\right|^{1/2} } \\ & \approx \frac{ 1 \cdot 205.510488 \cdot 0.343650 \cdot 8 } { {4^2 \cdot 17.776389} } \\ & \approx 1.986444108 \end{aligned}$$

Local data at primes of bad reduction

Copy content comment:Compute the local reduction data at primes of bad reduction
 
Copy content sage:E.local_data()
 
Copy content magma:LocalInformation(E);
 

This elliptic curve is not semistable. There are 2 primes $\frak{p}$ of bad reduction.

$\mathfrak{p}$ $N(\mathfrak{p})$ Tamagawa number Kodaira symbol Reduction type Root number \(\mathrm{ord}_{\mathfrak{p}}(\mathfrak{N}\)) \(\mathrm{ord}_{\mathfrak{p}}(\mathfrak{D}_{\mathrm{min}}\)) \(\mathrm{ord}_{\mathfrak{p}}(\mathrm{den}(j))\)
\((a)\) \(2\) \(2\) \(I_{2}\) Non-split multiplicative \(1\) \(1\) \(2\) \(2\)
\((-a+1)\) \(2\) \(4\) \(I_{4}^{*}\) Additive \(1\) \(6\) \(14\) \(0\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2Cs

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2.
Its isogeny class 128.7-e consists of curves linked by isogenies of degrees dividing 4.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.