Label |
Class |
Class size |
Class degree |
Base field |
Field degree |
Field signature |
Conductor |
Conductor norm |
Discriminant norm |
Root analytic conductor |
Bad primes |
Rank |
Torsion |
CM |
CM |
Sato-Tate |
$\Q$-curve |
Base change |
Semistable |
Potentially good |
Nonmax $\ell$ |
mod-$\ell$ images |
$Ш_{\textrm{an}}$ |
Tamagawa |
Regulator |
Period |
Leading coeff |
j-invariant |
Weierstrass coefficients |
Weierstrass equation |
25.1-a1 |
25.1-a |
$4$ |
$6$ |
3.3.1620.1 |
$3$ |
$[3, 0]$ |
25.1 |
\( 5^{2} \) |
\( - 5^{3} \) |
$6.15016$ |
$(a+3), (2a^2-3a-19)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
✓ |
|
$2, 3$ |
2B, 3B.1.2 |
$1$ |
\( 2 \) |
$3.171379165$ |
$32.38467535$ |
3.827555249 |
\( \frac{102868154496}{25} a^{2} - \frac{262568361024}{25} a - \frac{564218768016}{25} \) |
\( \bigl[a^{2} - a - 8\) , \( a^{2} - a - 8\) , \( a + 1\) , \( 3847 a^{2} - 5350 a - 38718\) , \( -33008 a^{2} + 45912 a + 332240\bigr] \) |
${y}^2+\left(a^{2}-a-8\right){x}{y}+\left(a+1\right){y}={x}^{3}+\left(a^{2}-a-8\right){x}^{2}+\left(3847a^{2}-5350a-38718\right){x}-33008a^{2}+45912a+332240$ |
25.1-a2 |
25.1-a |
$4$ |
$6$ |
3.3.1620.1 |
$3$ |
$[3, 0]$ |
25.1 |
\( 5^{2} \) |
\( 5^{9} \) |
$6.15016$ |
$(a+3), (2a^2-3a-19)$ |
$1$ |
$\Z/6\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
✓ |
|
$2, 3$ |
2B, 3B.1.1 |
$1$ |
\( 2 \cdot 3^{2} \) |
$0.528563194$ |
$194.3080521$ |
3.827555249 |
\( \frac{2359296}{125} \) |
\( \bigl[0\) , \( a^{2} - 2 a - 9\) , \( 1\) , \( 527694250 a^{2} - 733973258 a - 5311442969\) , \( -11070357693729 a^{2} + 15397830281951 a + 111427353147970\bigr] \) |
${y}^2+{y}={x}^{3}+\left(a^{2}-2a-9\right){x}^{2}+\left(527694250a^{2}-733973258a-5311442969\right){x}-11070357693729a^{2}+15397830281951a+111427353147970$ |
25.1-a3 |
25.1-a |
$4$ |
$6$ |
3.3.1620.1 |
$3$ |
$[3, 0]$ |
25.1 |
\( 5^{2} \) |
\( 5^{3} \) |
$6.15016$ |
$(a+3), (2a^2-3a-19)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
✓ |
|
$2, 3$ |
2B, 3B.1.2 |
$1$ |
\( 2 \) |
$1.585689582$ |
$64.76935071$ |
3.827555249 |
\( \frac{884736}{5} \) |
\( \bigl[0\) , \( a^{2} - a - 8\) , \( a^{2} - a - 7\) , \( 2053627 a^{2} - 2856402 a - 20670534\) , \( 2802623882 a^{2} - 3898187220 a - 28209473416\bigr] \) |
${y}^2+\left(a^{2}-a-7\right){y}={x}^{3}+\left(a^{2}-a-8\right){x}^{2}+\left(2053627a^{2}-2856402a-20670534\right){x}+2802623882a^{2}-3898187220a-28209473416$ |
25.1-a4 |
25.1-a |
$4$ |
$6$ |
3.3.1620.1 |
$3$ |
$[3, 0]$ |
25.1 |
\( 5^{2} \) |
\( - 5^{9} \) |
$6.15016$ |
$(a+3), (2a^2-3a-19)$ |
$1$ |
$\Z/6\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
✓ |
|
$2, 3$ |
2B, 3B.1.1 |
$1$ |
\( 2 \cdot 3^{2} \) |
$1.057126388$ |
$97.15402607$ |
3.827555249 |
\( -\frac{827913441024}{15625} a^{2} + \frac{1151540597376}{15625} a + \frac{8333300798064}{15625} \) |
\( \bigl[a\) , \( -a^{2} + 2 a + 8\) , \( 1\) , \( 9865930 a^{2} - 13722584 a - 99304328\) , \( -29677913145 a^{2} + 41279196425 a + 298719463291\bigr] \) |
${y}^2+a{x}{y}+{y}={x}^{3}+\left(-a^{2}+2a+8\right){x}^{2}+\left(9865930a^{2}-13722584a-99304328\right){x}-29677913145a^{2}+41279196425a+298719463291$ |
25.1-b1 |
25.1-b |
$2$ |
$2$ |
3.3.1620.1 |
$3$ |
$[3, 0]$ |
25.1 |
\( 5^{2} \) |
\( - 5^{3} \) |
$6.15016$ |
$(a+3), (2a^2-3a-19)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
✓ |
|
$2$ |
2B |
$1$ |
\( 2 \) |
$0.544554027$ |
$73.55316468$ |
1.492712223 |
\( \frac{31441536}{25} a^{2} + \frac{123804576}{25} a + \frac{111379824}{25} \) |
\( \bigl[a^{2} - a - 8\) , \( a + 1\) , \( a + 1\) , \( -242 a^{2} + 342 a + 2428\) , \( 7833 a^{2} - 10900 a - 78808\bigr] \) |
${y}^2+\left(a^{2}-a-8\right){x}{y}+\left(a+1\right){y}={x}^{3}+\left(a+1\right){x}^{2}+\left(-242a^{2}+342a+2428\right){x}+7833a^{2}-10900a-78808$ |
25.1-b2 |
25.1-b |
$2$ |
$2$ |
3.3.1620.1 |
$3$ |
$[3, 0]$ |
25.1 |
\( 5^{2} \) |
\( 5^{3} \) |
$6.15016$ |
$(a+3), (2a^2-3a-19)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
✓ |
|
$2$ |
2B |
$1$ |
\( 2 \) |
$0.272277013$ |
$147.1063293$ |
1.492712223 |
\( \frac{36864}{5} \) |
\( \bigl[0\) , \( -a^{2} + 2 a + 9\) , \( a + 1\) , \( 20 a^{2} - 28 a - 200\) , \( 108 a^{2} - 151 a - 1090\bigr] \) |
${y}^2+\left(a+1\right){y}={x}^{3}+\left(-a^{2}+2a+9\right){x}^{2}+\left(20a^{2}-28a-200\right){x}+108a^{2}-151a-1090$ |
25.1-c1 |
25.1-c |
$2$ |
$2$ |
3.3.1620.1 |
$3$ |
$[3, 0]$ |
25.1 |
\( 5^{2} \) |
\( - 5^{12} \) |
$6.15016$ |
$(a+3), (2a^2-3a-19)$ |
$0$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
✓ |
|
$2$ |
2B |
$1$ |
\( 2^{2} \cdot 5 \) |
$1$ |
$31.85073584$ |
3.956689470 |
\( -\frac{481590438784}{9765625} a^{2} + \frac{708403155616}{9765625} a + \frac{4931710725424}{9765625} \) |
\( \bigl[a^{2} - a - 8\) , \( -a + 1\) , \( a + 1\) , \( a^{2} + 8 a - 56\) , \( -78 a^{2} + 180 a + 497\bigr] \) |
${y}^2+\left(a^{2}-a-8\right){x}{y}+\left(a+1\right){y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(a^{2}+8a-56\right){x}-78a^{2}+180a+497$ |
25.1-c2 |
25.1-c |
$2$ |
$2$ |
3.3.1620.1 |
$3$ |
$[3, 0]$ |
25.1 |
\( 5^{2} \) |
\( 5^{9} \) |
$6.15016$ |
$(a+3), (2a^2-3a-19)$ |
$0$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
✓ |
|
$2$ |
2B |
$1$ |
\( 2 \cdot 5 \) |
$1$ |
$63.70147168$ |
3.956689470 |
\( \frac{1822846976}{3125} a^{2} - \frac{4651802624}{3125} a - \frac{9991335936}{3125} \) |
\( \bigl[0\) , \( -1\) , \( a^{2} - a - 7\) , \( -19817 a^{2} + 51790 a + 103932\) , \( -3178060 a^{2} + 8110714 a + 17435997\bigr] \) |
${y}^2+\left(a^{2}-a-7\right){y}={x}^{3}-{x}^{2}+\left(-19817a^{2}+51790a+103932\right){x}-3178060a^{2}+8110714a+17435997$ |
25.1-d1 |
25.1-d |
$4$ |
$6$ |
3.3.1620.1 |
$3$ |
$[3, 0]$ |
25.1 |
\( 5^{2} \) |
\( - 5^{3} \) |
$6.15016$ |
$(a+3), (2a^2-3a-19)$ |
$1$ |
$\Z/6\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
✓ |
|
$2, 3$ |
2B, 3B.1.1 |
$1$ |
\( 2 \) |
$2.243575994$ |
$171.8825381$ |
1.596848758 |
\( \frac{3786489538729056}{25} a^{2} + \frac{14931570572274816}{25} a + \frac{13442995925284464}{25} \) |
\( \bigl[a^{2} - a - 8\) , \( a^{2} - 2 a - 9\) , \( a + 1\) , \( 171 a^{2} - 239 a - 1725\) , \( -2307 a^{2} + 3208 a + 23218\bigr] \) |
${y}^2+\left(a^{2}-a-8\right){x}{y}+\left(a+1\right){y}={x}^{3}+\left(a^{2}-2a-9\right){x}^{2}+\left(171a^{2}-239a-1725\right){x}-2307a^{2}+3208a+23218$ |
25.1-d2 |
25.1-d |
$4$ |
$6$ |
3.3.1620.1 |
$3$ |
$[3, 0]$ |
25.1 |
\( 5^{2} \) |
\( - 5^{9} \) |
$6.15016$ |
$(a+3), (2a^2-3a-19)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
✓ |
|
$2, 3$ |
2B, 3B.1.2 |
$1$ |
\( 2 \) |
$0.747858664$ |
$57.29417937$ |
1.596848758 |
\( \frac{1076387616}{15625} a^{2} - \frac{2241177984}{15625} a - \frac{5173304976}{15625} \) |
\( \bigl[a^{2} - a - 8\) , \( a^{2} - a - 8\) , \( a^{2} - a - 7\) , \( -2026699 a^{2} + 2818950 a + 20399496\) , \( 428482037 a^{2} - 595978364 a - 4312834379\bigr] \) |
${y}^2+\left(a^{2}-a-8\right){x}{y}+\left(a^{2}-a-7\right){y}={x}^{3}+\left(a^{2}-a-8\right){x}^{2}+\left(-2026699a^{2}+2818950a+20399496\right){x}+428482037a^{2}-595978364a-4312834379$ |
25.1-d3 |
25.1-d |
$4$ |
$6$ |
3.3.1620.1 |
$3$ |
$[3, 0]$ |
25.1 |
\( 5^{2} \) |
\( 5^{9} \) |
$6.15016$ |
$(a+3), (2a^2-3a-19)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
✓ |
|
$2, 3$ |
2B, 3B.1.2 |
$1$ |
\( 2 \) |
$0.373929332$ |
$114.5883587$ |
1.596848758 |
\( \frac{221184}{125} \) |
\( \bigl[0\) , \( a^{2} - a - 8\) , \( a^{2} - a - 7\) , \( 433619587 a^{2} - 603124157 a - 4364546000\) , \( 1323750498208 a^{2} - 1841212910187 a - 13324051338563\bigr] \) |
${y}^2+\left(a^{2}-a-7\right){y}={x}^{3}+\left(a^{2}-a-8\right){x}^{2}+\left(433619587a^{2}-603124157a-4364546000\right){x}+1323750498208a^{2}-1841212910187a-13324051338563$ |
25.1-d4 |
25.1-d |
$4$ |
$6$ |
3.3.1620.1 |
$3$ |
$[3, 0]$ |
25.1 |
\( 5^{2} \) |
\( 5^{3} \) |
$6.15016$ |
$(a+3), (2a^2-3a-19)$ |
$1$ |
$\Z/6\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
✓ |
|
$2, 3$ |
2B, 3B.1.1 |
$1$ |
\( 2 \) |
$1.121787997$ |
$343.7650762$ |
1.596848758 |
\( \frac{362225664}{5} \) |
\( \bigl[0\) , \( -a^{2} + 3 a + 7\) , \( a + 1\) , \( 147789 a^{2} - 204317 a - 1492453\) , \( -54941857 a^{2} + 76372866 a + 553192471\bigr] \) |
${y}^2+\left(a+1\right){y}={x}^{3}+\left(-a^{2}+3a+7\right){x}^{2}+\left(147789a^{2}-204317a-1492453\right){x}-54941857a^{2}+76372866a+553192471$ |
25.1-e1 |
25.1-e |
$2$ |
$2$ |
3.3.1620.1 |
$3$ |
$[3, 0]$ |
25.1 |
\( 5^{2} \) |
\( 5^{6} \) |
$6.15016$ |
$(a+3), (2a^2-3a-19)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
✓ |
|
$2$ |
2B |
$1$ |
\( 1 \) |
$1.965229468$ |
$84.81836200$ |
3.106039004 |
\( \frac{425900520981}{3125} a^{2} + \frac{1679450479506}{3125} a + \frac{1511948362509}{3125} \) |
\( \bigl[1\) , \( a^{2} - 3 a - 8\) , \( a^{2} - 2 a - 7\) , \( -6 a^{2} + 15 a + 34\) , \( -40 a^{2} + 104 a + 221\bigr] \) |
${y}^2+{x}{y}+\left(a^{2}-2a-7\right){y}={x}^{3}+\left(a^{2}-3a-8\right){x}^{2}+\left(-6a^{2}+15a+34\right){x}-40a^{2}+104a+221$ |
25.1-e2 |
25.1-e |
$2$ |
$2$ |
3.3.1620.1 |
$3$ |
$[3, 0]$ |
25.1 |
\( 5^{2} \) |
\( - 5^{12} \) |
$6.15016$ |
$(a+3), (2a^2-3a-19)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
✓ |
|
$2$ |
2B |
$1$ |
\( 2^{2} \) |
$0.982614734$ |
$42.40918100$ |
3.106039004 |
\( -\frac{491554360396224}{9765625} a^{2} + \frac{658794497517801}{9765625} a + \frac{5045253177418389}{9765625} \) |
\( \bigl[1\) , \( a^{2} - 3 a - 8\) , \( a^{2} - 2 a - 7\) , \( -121 a^{2} + 310 a + 659\) , \( -1717 a^{2} + 4382 a + 9429\bigr] \) |
${y}^2+{x}{y}+\left(a^{2}-2a-7\right){y}={x}^{3}+\left(a^{2}-3a-8\right){x}^{2}+\left(-121a^{2}+310a+659\right){x}-1717a^{2}+4382a+9429$ |
25.1-f1 |
25.1-f |
$4$ |
$6$ |
3.3.1620.1 |
$3$ |
$[3, 0]$ |
25.1 |
\( 5^{2} \) |
\( - 5^{27} \) |
$6.15016$ |
$(a+3), (2a^2-3a-19)$ |
$1$ |
$\Z/6\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
✓ |
|
$2, 3$ |
2B, 3B.1.1 |
$1$ |
\( 2 \cdot 3^{4} \) |
$2.194302187$ |
$4.546598320$ |
3.346256937 |
\( -\frac{757976709141480384}{3814697265625} a^{2} + \frac{1010791944377174016}{3814697265625} a + \frac{7806263645751303024}{3814697265625} \) |
\( \bigl[a^{2} - a - 8\) , \( a^{2} - 2 a - 9\) , \( a^{2} - a - 7\) , \( 5189 a^{2} - 7206 a - 52281\) , \( 360950 a^{2} - 502080 a - 3632976\bigr] \) |
${y}^2+\left(a^{2}-a-8\right){x}{y}+\left(a^{2}-a-7\right){y}={x}^{3}+\left(a^{2}-2a-9\right){x}^{2}+\left(5189a^{2}-7206a-52281\right){x}+360950a^{2}-502080a-3632976$ |
25.1-f2 |
25.1-f |
$4$ |
$6$ |
3.3.1620.1 |
$3$ |
$[3, 0]$ |
25.1 |
\( 5^{2} \) |
\( 5^{9} \) |
$6.15016$ |
$(a+3), (2a^2-3a-19)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
✓ |
|
$2, 3$ |
2B, 3B.1.2 |
$1$ |
\( 2 \cdot 3^{2} \) |
$3.291453281$ |
$3.031065546$ |
3.346256937 |
\( \frac{183711891456}{125} \) |
\( \bigl[0\) , \( a^{2} - a - 8\) , \( a^{2} - 2 a - 7\) , \( -1693 a^{2} - 6672 a - 6004\) , \( -159791 a^{2} - 630109 a - 567289\bigr] \) |
${y}^2+\left(a^{2}-2a-7\right){y}={x}^{3}+\left(a^{2}-a-8\right){x}^{2}+\left(-1693a^{2}-6672a-6004\right){x}-159791a^{2}-630109a-567289$ |
25.1-f3 |
25.1-f |
$4$ |
$6$ |
3.3.1620.1 |
$3$ |
$[3, 0]$ |
25.1 |
\( 5^{2} \) |
\( 5^{27} \) |
$6.15016$ |
$(a+3), (2a^2-3a-19)$ |
$1$ |
$\Z/6\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
✓ |
|
$2, 3$ |
2B, 3B.1.1 |
$1$ |
\( 2 \cdot 3^{4} \) |
$1.097151093$ |
$9.093196640$ |
3.346256937 |
\( \frac{4045602816}{1953125} \) |
\( \bigl[0\) , \( -a^{2} + 3 a + 7\) , \( a^{2} - a - 7\) , \( 53 a^{2} - 94 a - 569\) , \( 161 a^{2} - 274 a - 1761\bigr] \) |
${y}^2+\left(a^{2}-a-7\right){y}={x}^{3}+\left(-a^{2}+3a+7\right){x}^{2}+\left(53a^{2}-94a-569\right){x}+161a^{2}-274a-1761$ |
25.1-f4 |
25.1-f |
$4$ |
$6$ |
3.3.1620.1 |
$3$ |
$[3, 0]$ |
25.1 |
\( 5^{2} \) |
\( - 5^{9} \) |
$6.15016$ |
$(a+3), (2a^2-3a-19)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
✓ |
|
$2, 3$ |
2B, 3B.1.2 |
$1$ |
\( 2 \cdot 3^{2} \) |
$6.582906563$ |
$1.515532773$ |
3.346256937 |
\( -\frac{5446944462950029629504}{15625} a^{2} + \frac{7576189380332831056896}{15625} a + \frac{54825564000910852447344}{15625} \) |
\( \bigl[a\) , \( -a + 1\) , \( a^{2} - a - 7\) , \( 115 a^{2} - 163 a - 1201\) , \( 1367 a^{2} - 1893 a - 13938\bigr] \) |
${y}^2+a{x}{y}+\left(a^{2}-a-7\right){y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(115a^{2}-163a-1201\right){x}+1367a^{2}-1893a-13938$ |
25.1-g1 |
25.1-g |
$4$ |
$6$ |
3.3.1620.1 |
$3$ |
$[3, 0]$ |
25.1 |
\( 5^{2} \) |
\( 5^{9} \) |
$6.15016$ |
$(a+3), (2a^2-3a-19)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
✓ |
|
$2, 3$ |
2B, 3B.1.2 |
$1$ |
\( 2 \) |
$3.654797929$ |
$13.35129402$ |
1.818530050 |
\( \frac{488095744}{125} \) |
\( \bigl[0\) , \( a - 1\) , \( a^{2} - 2 a - 7\) , \( -10 a^{2} + 82 a - 165\) , \( -123 a^{2} + 645 a - 630\bigr] \) |
${y}^2+\left(a^{2}-2a-7\right){y}={x}^{3}+\left(a-1\right){x}^{2}+\left(-10a^{2}+82a-165\right){x}-123a^{2}+645a-630$ |
25.1-g2 |
25.1-g |
$4$ |
$6$ |
3.3.1620.1 |
$3$ |
$[3, 0]$ |
25.1 |
\( 5^{2} \) |
\( 5^{3} \) |
$6.15016$ |
$(a+3), (2a^2-3a-19)$ |
$1$ |
$\Z/6\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
✓ |
|
$2, 3$ |
2B, 3B.1.1 |
$1$ |
\( 2 \) |
$1.218265976$ |
$360.4849385$ |
1.818530050 |
\( \frac{16384}{5} \) |
\( \bigl[0\) , \( a - 1\) , \( a^{2} - 2 a - 7\) , \( 2 a - 5\) , \( a^{2} - 5 a + 5\bigr] \) |
${y}^2+\left(a^{2}-2a-7\right){y}={x}^{3}+\left(a-1\right){x}^{2}+\left(2a-5\right){x}+a^{2}-5a+5$ |
25.1-g3 |
25.1-g |
$4$ |
$6$ |
3.3.1620.1 |
$3$ |
$[3, 0]$ |
25.1 |
\( 5^{2} \) |
\( - 5^{18} \) |
$6.15016$ |
$(a+3), (2a^2-3a-19)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
✓ |
|
$2, 3$ |
2B, 3B.1.2 |
$1$ |
\( 2^{2} \) |
$7.309595859$ |
$3.337823505$ |
1.818530050 |
\( -\frac{20720464}{15625} \) |
\( \bigl[a\) , \( a + 1\) , \( a^{2} - 2 a - 7\) , \( -80 a^{2} - 322 a - 295\) , \( -2783 a^{2} - 10971 a - 9877\bigr] \) |
${y}^2+a{x}{y}+\left(a^{2}-2a-7\right){y}={x}^{3}+\left(a+1\right){x}^{2}+\left(-80a^{2}-322a-295\right){x}-2783a^{2}-10971a-9877$ |
25.1-g4 |
25.1-g |
$4$ |
$6$ |
3.3.1620.1 |
$3$ |
$[3, 0]$ |
25.1 |
\( 5^{2} \) |
\( - 5^{6} \) |
$6.15016$ |
$(a+3), (2a^2-3a-19)$ |
$1$ |
$\Z/6\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
✓ |
|
$2, 3$ |
2B, 3B.1.1 |
$1$ |
\( 2^{2} \) |
$2.436531953$ |
$90.12123464$ |
1.818530050 |
\( \frac{21296}{25} \) |
\( \bigl[a\) , \( a + 1\) , \( a^{2} - 2 a - 7\) , \( 10 a^{2} + 33 a + 25\) , \( 79 a^{2} + 315 a + 284\bigr] \) |
${y}^2+a{x}{y}+\left(a^{2}-2a-7\right){y}={x}^{3}+\left(a+1\right){x}^{2}+\left(10a^{2}+33a+25\right){x}+79a^{2}+315a+284$ |
*The rank, regulator and analytic order of Ш are
not known for all curves in the database; curves for which these are
unknown will not appear in searches specifying one of these
quantities.