Properties

Label 3.3.1620.1-25.1-f1
Base field 3.3.1620.1
Conductor norm \( 25 \)
CM no
Base change no
Q-curve yes
Torsion order \( 6 \)
Rank \( 1 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 3.3.1620.1

Generator \(a\), with minimal polynomial \( x^{3} - 12 x - 14 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([-14, -12, 0, 1]))
 
gp: K = nfinit(Polrev([-14, -12, 0, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-14, -12, 0, 1]);
 

Weierstrass equation

\({y}^2+\left(a^{2}-a-8\right){x}{y}+\left(a^{2}-a-7\right){y}={x}^{3}+\left(a^{2}-2a-9\right){x}^{2}+\left(5189a^{2}-7206a-52281\right){x}+360950a^{2}-502080a-3632976\)
sage: E = EllipticCurve([K([-8,-1,1]),K([-9,-2,1]),K([-7,-1,1]),K([-52281,-7206,5189]),K([-3632976,-502080,360950])])
 
gp: E = ellinit([Polrev([-8,-1,1]),Polrev([-9,-2,1]),Polrev([-7,-1,1]),Polrev([-52281,-7206,5189]),Polrev([-3632976,-502080,360950])], K);
 
magma: E := EllipticCurve([K![-8,-1,1],K![-9,-2,1],K![-7,-1,1],K![-52281,-7206,5189],K![-3632976,-502080,360950]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((a^2-3a-3)\) = \((a+3)\cdot(2a^2-3a-19)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 25 \) = \(5\cdot5\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((-47500a^2-1520000a-1573125)\) = \((a+3)^{9}\cdot(2a^2-3a-19)^{18}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( -7450580596923828125 \) = \(-5^{9}\cdot5^{18}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( -\frac{757976709141480384}{3814697265625} a^{2} + \frac{1010791944377174016}{3814697265625} a + \frac{7806263645751303024}{3814697265625} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(1\)
Generator $\left(-\frac{1739}{49} a^{2} + \frac{2329}{49} a + \frac{2550}{7} : \frac{56146}{343} a^{2} - \frac{75944}{343} a - \frac{82067}{49} : 1\right)$
Height \(2.1943021878809504055863088329650305134\)
Torsion structure: \(\Z/6\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(19 a^{2} - 29 a - 180 : 22 a^{2} - 18 a - 273 : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 1 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(1\)
Regulator: \( 2.1943021878809504055863088329650305134 \)
Period: \( 4.5465983204133118357427823726644381094 \)
Tamagawa product: \( 162 \)  =  \(3^{2}\cdot( 2 \cdot 3^{2} )\)
Torsion order: \(6\)
Leading coefficient: \( 3.3462569370500240681823464047088695097 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((a+3)\) \(5\) \(9\) \(I_{9}\) Split multiplicative \(-1\) \(1\) \(9\) \(9\)
\((2a^2-3a-19)\) \(5\) \(18\) \(I_{18}\) Split multiplicative \(-1\) \(1\) \(18\) \(18\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B
\(3\) 3B.1.1

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2, 3 and 6.
Its isogeny class 25.1-f consists of curves linked by isogenies of degrees dividing 6.

Base change

This elliptic curve is a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.