Properties

Label 2.2.8.1-3087.2-h3
Base field \(\Q(\sqrt{2}) \)
Conductor norm \( 3087 \)
CM no
Base change no
Q-curve yes
Torsion order \( 4 \)
Rank \( 0 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field \(\Q(\sqrt{2}) \)

Generator \(a\), with minimal polynomial \( x^{2} - 2 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([-2, 0, 1]))
 
gp: K = nfinit(Polrev([-2, 0, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-2, 0, 1]);
 

Weierstrass equation

\({y}^2+\left(a+1\right){x}{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(-16a-36\right){x}+22a+25\)
sage: E = EllipticCurve([K([1,1]),K([-1,-1]),K([0,0]),K([-36,-16]),K([25,22])])
 
gp: E = ellinit([Polrev([1,1]),Polrev([-1,-1]),Polrev([0,0]),Polrev([-36,-16]),Polrev([25,22])], K);
 
magma: E := EllipticCurve([K![1,1],K![-1,-1],K![0,0],K![-36,-16],K![25,22]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((42a+21)\) = \((-2a+1)\cdot(2a+1)^{2}\cdot(3)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 3087 \) = \(7\cdot7^{2}\cdot9\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((1051785a-599319)\) = \((-2a+1)^{2}\cdot(2a+1)^{8}\cdot(3)^{4}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 1853320108689 \) = \(7^{2}\cdot7^{8}\cdot9^{4}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( \frac{7189057}{3969} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(0\)
Torsion structure: \(\Z/2\Z\oplus\Z/2\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generators: $\left(-4 a - 2 : 3 a + 5 : 1\right)$ $\left(\frac{1}{2} a + \frac{1}{4} : -\frac{3}{8} a - \frac{5}{8} : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 0 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(0\)
Regulator: \( 1 \)
Period: \( 5.2133512384593497628220950622827806520 \)
Tamagawa product: \( 16 \)  =  \(2\cdot2^{2}\cdot2\)
Torsion order: \(4\)
Leading coefficient: \( 1.8431980067109459887544564198399917062 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((-2a+1)\) \(7\) \(2\) \(I_{2}\) Split multiplicative \(-1\) \(1\) \(2\) \(2\)
\((2a+1)\) \(7\) \(4\) \(I_{2}^{*}\) Additive \(-1\) \(2\) \(8\) \(2\)
\((3)\) \(9\) \(2\) \(I_{4}\) Non-split multiplicative \(1\) \(1\) \(4\) \(4\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2Cs

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2 and 4.
Its isogeny class 3087.2-h consists of curves linked by isogenies of degrees dividing 8.

Base change

This elliptic curve is a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.