Properties

Label 2.2.8.1-2744.1-a2
Base field \(\Q(\sqrt{2}) \)
Conductor norm \( 2744 \)
CM no
Base change no
Q-curve yes
Torsion order \( 2 \)
Rank \( 0 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field \(\Q(\sqrt{2}) \)

Generator \(a\), with minimal polynomial \( x^{2} - 2 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([-2, 0, 1]))
 
gp: K = nfinit(Polrev([-2, 0, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-2, 0, 1]);
 

Weierstrass equation

\({y}^2+a{x}{y}={x}^{3}+{x}^{2}+\left(431a-132\right){x}+5054a-1007\)
sage: E = EllipticCurve([K([0,1]),K([1,0]),K([0,0]),K([-132,431]),K([-1007,5054])])
 
gp: E = ellinit([Polrev([0,1]),Polrev([1,0]),Polrev([0,0]),Polrev([-132,431]),Polrev([-1007,5054])], K);
 
magma: E := EllipticCurve([K![0,1],K![1,0],K![0,0],K![-132,431],K![-1007,5054]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((14a+56)\) = \((a)^{3}\cdot(-2a+1)\cdot(2a+1)^{2}\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 2744 \) = \(2^{3}\cdot7\cdot7^{2}\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((-5003488a-260981056)\) = \((a)^{11}\cdot(-2a+1)^{2}\cdot(2a+1)^{14}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( -68061041806542848 \) = \(-2^{11}\cdot7^{2}\cdot7^{14}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( -\frac{29774895462729}{5764801} a + \frac{42111203990760}{5764801} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(0\)
Torsion structure: \(\Z/2\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(2 a - \frac{27}{2} : \frac{27}{4} a - 2 : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 0 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(0\)
Regulator: \( 1 \)
Period: \( 0.75900854731104827385956014248768139580 \)
Tamagawa product: \( 8 \)  =  \(1\cdot2\cdot2^{2}\)
Torsion order: \(2\)
Leading coefficient: \( 2.1468003631287708646575889149694634805 \)
Analytic order of Ш: \( 4 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((a)\) \(2\) \(1\) \(II^{*}\) Additive \(1\) \(3\) \(11\) \(0\)
\((-2a+1)\) \(7\) \(2\) \(I_{2}\) Split multiplicative \(-1\) \(1\) \(2\) \(2\)
\((2a+1)\) \(7\) \(4\) \(I_{8}^{*}\) Additive \(-1\) \(2\) \(14\) \(8\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2, 4 and 8.
Its isogeny class 2744.1-a consists of curves linked by isogenies of degrees dividing 8.

Base change

This elliptic curve is a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.