Properties

Label 2.2.8.1-1568.2-i1
Base field Q(2)\Q(\sqrt{2})
Conductor norm 1568 1568
CM yes (64-64)
Base change no
Q-curve yes
Torsion order 2 2
Rank 0 0

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Base field Q(2)\Q(\sqrt{2})

Generator aa, with minimal polynomial x22 x^{2} - 2 ; class number 11.

Copy content comment:Define the base number field
 
Copy content sage:R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([-2, 0, 1]))
 
Copy content gp:K = nfinit(Polrev([-2, 0, 1]));
 
Copy content magma:R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-2, 0, 1]);
 

Weierstrass equation

y2+axy+ay=x3+x2+(55a97)x+1397a+1934{y}^2+a{x}{y}+a{y}={x}^{3}+{x}^{2}+\left(-55a-97\right){x}+1397a+1934
Copy content comment:Define the curve
 
Copy content sage:E = EllipticCurve([K([0,1]),K([1,0]),K([0,1]),K([-97,-55]),K([1934,1397])])
 
Copy content gp:E = ellinit([Polrev([0,1]),Polrev([1,0]),Polrev([0,1]),Polrev([-97,-55]),Polrev([1934,1397])], K);
 
Copy content magma:E := EllipticCurve([K![0,1],K![1,0],K![0,1],K![-97,-55],K![1934,1397]]);
 

This is a global minimal model.

Copy content comment:Test whether it is a global minimal model
 
Copy content sage:E.is_global_minimal_model()
 

Mordell-Weil group structure

Z/2Z\Z/{2}\Z

Mordell-Weil generators

PPh^(P)\hat{h}(P)Order
(6a232:214a+6:1)\left(-6 a - \frac{23}{2} : \frac{21}{4} a + 6 : 1\right)0022

Invariants

Conductor: N\frak{N} = (4a+40)(4a+40) = (a)5(2a+1)2(a)^{5}\cdot(-2a+1)^{2}
Copy content comment:Compute the conductor
 
Copy content sage:E.conductor()
 
Copy content gp:ellglobalred(E)[1]
 
Copy content magma:Conductor(E);
 
Conductor norm: N(N)N(\frak{N}) = 1568 1568 = 25722^{5}\cdot7^{2}
Copy content comment:Compute the norm of the conductor
 
Copy content sage:E.conductor().norm()
 
Copy content gp:idealnorm(ellglobalred(E)[1])
 
Copy content magma:Norm(Conductor(E));
 
Discriminant: Δ\Delta = 2416a8480-2416a-8480
Discriminant ideal: Dmin=(Δ)\frak{D}_{\mathrm{min}} = (\Delta) = (2416a8480)(-2416a-8480) = (a)9(2a+1)6(a)^{9}\cdot(-2a+1)^{6}
Copy content comment:Compute the discriminant
 
Copy content sage:E.discriminant()
 
Copy content gp:E.disc
 
Copy content magma:Discriminant(E);
 
Discriminant norm: N(Dmin)=N(Δ)N(\frak{D}_{\mathrm{min}}) = N(\Delta) = 60236288 -60236288 = 2976-2^{9}\cdot7^{6}
Copy content comment:Compute the norm of the discriminant
 
Copy content sage:E.discriminant().norm()
 
Copy content gp:norm(E.disc)
 
Copy content magma:Norm(Discriminant(E));
 
j-invariant: jj = 29071392966a+41113158120 -29071392966 a + 41113158120
Copy content comment:Compute the j-invariant
 
Copy content sage:E.j_invariant()
 
Copy content gp:E.j
 
Copy content magma:jInvariant(E);
 
Endomorphism ring: End(E)\mathrm{End}(E) = Z\Z   
Geometric endomorphism ring: End(EQ)\mathrm{End}(E_{\overline{\Q}}) = Z[16]\Z[\sqrt{-16}]    (potential complex multiplication)
Copy content comment:Test for Complex Multiplication
 
Copy content sage:E.has_cm(), E.cm_discriminant()
 
Copy content magma:HasComplexMultiplication(E);
 
Sato-Tate group: ST(E)\mathrm{ST}(E) = N(U(1))N(\mathrm{U}(1))

BSD invariants

Analytic rank: ranr_{\mathrm{an}}= 0 0
Copy content comment:Compute the Mordell-Weil rank
 
Copy content sage:E.rank()
 
Copy content magma:Rank(E);
 
Mordell-Weil rank: rr = 00
Regulator: Reg(E/K)\mathrm{Reg}(E/K) = 1 1
Néron-Tate Regulator: RegNT(E/K)\mathrm{Reg}_{\mathrm{NT}}(E/K) = 1 1
Global period: Ω(E/K)\Omega(E/K) 2.5985759845485830206907096824875924345 2.5985759845485830206907096824875924345
Tamagawa product: pcp\prod_{\frak{p}}c_{\frak{p}}= 2 2  =  121\cdot2
Torsion order: #E(K)tor\#E(K)_{\mathrm{tor}}= 22
Special value: L(r)(E/K,1)/r!L^{(r)}(E/K,1)/r! 1.8374707001028121947568890733149830343 1.8374707001028121947568890733149830343
Analytic order of Ш: Шan{}_{\mathrm{an}}= 4 4 (rounded)

BSD formula

1.837470700L(E/K,1)=?#Ш(E/K)Ω(E/K)RegNT(E/K)pcp#E(K)tor2dK1/242.59857612222.8284271.837470700\begin{aligned}1.837470700 \approx L(E/K,1) & \overset{?}{=} \frac{ \# Ш(E/K) \cdot \Omega(E/K) \cdot \mathrm{Reg}_{\mathrm{NT}}(E/K) \cdot \prod_{\mathfrak{p}} c_{\mathfrak{p}} } { \#E(K)_{\mathrm{tor}}^2 \cdot \left|d_K\right|^{1/2} } \\ & \approx \frac{ 4 \cdot 2.598576 \cdot 1 \cdot 2 } { {2^2 \cdot 2.828427} } \\ & \approx 1.837470700 \end{aligned}

Local data at primes of bad reduction

Copy content comment:Compute the local reduction data at primes of bad reduction
 
Copy content sage:E.local_data()
 
Copy content magma:LocalInformation(E);
 

This elliptic curve is not semistable. There are 2 primes p\frak{p} of bad reduction.

p\mathfrak{p} N(p)N(\mathfrak{p}) Tamagawa number Kodaira symbol Reduction type Root number ordp(N\mathrm{ord}_{\mathfrak{p}}(\mathfrak{N}) ordp(Dmin\mathrm{ord}_{\mathfrak{p}}(\mathfrak{D}_{\mathrm{min}}) ordp(den(j))\mathrm{ord}_{\mathfrak{p}}(\mathrm{den}(j))
(a)(a) 22 11 I0I_0^{*} Additive 1-1 55 99 00
(2a+1)(-2a+1) 77 22 I0I_0^{*} Additive 1-1 22 66 00

Galois Representations

The mod p p Galois Representation has maximal image for all primes p<1000 p < 1000 .

The image is a Borel subgroup if p=2p=2, the normalizer of a split Cartan subgroup if (1p)=+1\left(\frac{ -1 }{p}\right)=+1 or the normalizer of a nonsplit Cartan subgroup if (1p)=1\left(\frac{ -1 }{p}\right)=-1.

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree dd for d=d= 2, 4, 8 and 16.
Its isogeny class 1568.2-i consists of curves linked by isogenies of degrees dividing 16.

Base change

This elliptic curve is a Q\Q-curve.

It is not the base change of an elliptic curve defined over any subfield.