Generator a a a , with minimal polynomial
x 2 − 2 x^{2} - 2 x 2 − 2 ; class number 1 1 1 .
sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([-2, 0, 1]))
gp: K = nfinit(Polrev([-2, 0, 1]));
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-2, 0, 1]);
y 2 + a x y + a y = x 3 + x 2 + ( − 55 a − 97 ) x + 1397 a + 1934 {y}^2+a{x}{y}+a{y}={x}^{3}+{x}^{2}+\left(-55a-97\right){x}+1397a+1934 y 2 + a x y + a y = x 3 + x 2 + ( − 5 5 a − 9 7 ) x + 1 3 9 7 a + 1 9 3 4
sage: E = EllipticCurve([K([0,1]),K([1,0]),K([0,1]),K([-97,-55]),K([1934,1397])])
gp: E = ellinit([Polrev([0,1]),Polrev([1,0]),Polrev([0,1]),Polrev([-97,-55]),Polrev([1934,1397])], K);
magma: E := EllipticCurve([K![0,1],K![1,0],K![0,1],K![-97,-55],K![1934,1397]]);
This is a global minimal model .
sage: E.is_global_minimal_model()
Z / 2 Z \Z/{2}\Z Z / 2 Z
P P P h ^ ( P ) \hat{h}(P) h ^ ( P ) Order
( − 6 a − 23 2 : 21 4 a + 6 : 1 ) \left(-6 a - \frac{23}{2} : \frac{21}{4} a + 6 : 1\right) ( − 6 a − 2 2 3 : 4 2 1 a + 6 : 1 ) 0 0 0 2 2 2
Conductor :
N \frak{N} N
=
( 4 a + 40 ) (4a+40) ( 4 a + 4 0 )
=
( a ) 5 ⋅ ( − 2 a + 1 ) 2 (a)^{5}\cdot(-2a+1)^{2} ( a ) 5 ⋅ ( − 2 a + 1 ) 2
sage: E.conductor()
gp: ellglobalred(E)[1]
magma: Conductor(E);
Conductor norm :
N ( N ) N(\frak{N}) N ( N )
=
1568 1568 1 5 6 8
=
2 5 ⋅ 7 2 2^{5}\cdot7^{2} 2 5 ⋅ 7 2
sage: E.conductor().norm()
gp: idealnorm(ellglobalred(E)[1])
magma: Norm(Conductor(E));
Discriminant :
Δ \Delta Δ
=
− 2416 a − 8480 -2416a-8480 − 2 4 1 6 a − 8 4 8 0
Discriminant ideal :
D m i n = ( Δ ) \frak{D}_{\mathrm{min}} = (\Delta) D m i n = ( Δ )
=
( − 2416 a − 8480 ) (-2416a-8480) ( − 2 4 1 6 a − 8 4 8 0 )
=
( a ) 9 ⋅ ( − 2 a + 1 ) 6 (a)^{9}\cdot(-2a+1)^{6} ( a ) 9 ⋅ ( − 2 a + 1 ) 6
sage: E.discriminant()
gp: E.disc
magma: Discriminant(E);
Discriminant norm :
N ( D m i n ) = N ( Δ ) N(\frak{D}_{\mathrm{min}}) = N(\Delta) N ( D m i n ) = N ( Δ )
=
− 60236288 -60236288 − 6 0 2 3 6 2 8 8
=
− 2 9 ⋅ 7 6 -2^{9}\cdot7^{6} − 2 9 ⋅ 7 6
sage: E.discriminant().norm()
gp: norm(E.disc)
magma: Norm(Discriminant(E));
j-invariant :
j j j
=
− 29071392966 a + 41113158120 -29071392966 a + 41113158120 − 2 9 0 7 1 3 9 2 9 6 6 a + 4 1 1 1 3 1 5 8 1 2 0
sage: E.j_invariant()
gp: E.j
magma: jInvariant(E);
Endomorphism ring :
E n d ( E ) \mathrm{End}(E) E n d ( E )
=
Z \Z Z
Geometric endomorphism ring :
E n d ( E Q ‾ ) \mathrm{End}(E_{\overline{\Q}}) E n d ( E Q )
=
Z [ − 16 ] \Z[\sqrt{-16}] Z [ − 1 6 ]
(potential complex multiplication )
sage: E.has_cm(), E.cm_discriminant()
magma: HasComplexMultiplication(E);
Sato-Tate group :
S T ( E ) \mathrm{ST}(E) S T ( E )
=
N ( U ( 1 ) ) N(\mathrm{U}(1)) N ( U ( 1 ) )
Analytic rank :
r a n r_{\mathrm{an}} r a n =
0 0 0
sage: E.rank()
magma: Rank(E);
Mordell-Weil rank :
r r r
=
0 0 0
Regulator :
R e g ( E / K ) \mathrm{Reg}(E/K) R e g ( E / K )
=
1 1 1
Néron-Tate Regulator :
R e g N T ( E / K ) \mathrm{Reg}_{\mathrm{NT}}(E/K) R e g N T ( E / K )
=
1 1 1
Global period :
Ω ( E / K ) \Omega(E/K) Ω ( E / K ) ≈
2.5985759845485830206907096824875924345 2.5985759845485830206907096824875924345 2 . 5 9 8 5 7 5 9 8 4 5 4 8 5 8 3 0 2 0 6 9 0 7 0 9 6 8 2 4 8 7 5 9 2 4 3 4 5
Tamagawa product :
∏ p c p \prod_{\frak{p}}c_{\frak{p}} ∏ p c p =
2 2 2
= 1 ⋅ 2 1\cdot2 1 ⋅ 2
Torsion order :
# E ( K ) t o r \#E(K)_{\mathrm{tor}} # E ( K ) t o r =
2 2 2
Special value :
L ( r ) ( E / K , 1 ) / r ! L^{(r)}(E/K,1)/r! L ( r ) ( E / K , 1 ) / r !
≈ 1.8374707001028121947568890733149830343 1.8374707001028121947568890733149830343 1 . 8 3 7 4 7 0 7 0 0 1 0 2 8 1 2 1 9 4 7 5 6 8 8 9 0 7 3 3 1 4 9 8 3 0 3 4 3
Analytic order of Ш :
Шa n {}_{\mathrm{an}} a n =
4 4 4 (rounded)
1.837470700 ≈ L ( E / K , 1 ) = ? # Ш ( E / K ) ⋅ Ω ( E / K ) ⋅ R e g N T ( E / K ) ⋅ ∏ p c p # E ( K ) t o r 2 ⋅ ∣ d K ∣ 1 / 2 ≈ 4 ⋅ 2.598576 ⋅ 1 ⋅ 2 2 2 ⋅ 2.828427 ≈ 1.837470700 \begin{aligned}1.837470700 \approx L(E/K,1) & \overset{?}{=} \frac{ \# Ш(E/K) \cdot \Omega(E/K) \cdot \mathrm{Reg}_{\mathrm{NT}}(E/K) \cdot \prod_{\mathfrak{p}} c_{\mathfrak{p}} } { \#E(K)_{\mathrm{tor}}^2 \cdot \left|d_K\right|^{1/2} } \\ & \approx \frac{ 4 \cdot 2.598576 \cdot 1 \cdot 2 } { {2^2 \cdot 2.828427} } \\ & \approx 1.837470700 \end{aligned} 1 . 8 3 7 4 7 0 7 0 0 ≈ L ( E / K , 1 ) = ? # E ( K ) t o r 2 ⋅ ∣ d K ∣ 1 / 2 # Ш ( E / K ) ⋅ Ω ( E / K ) ⋅ R e g N T ( E / K ) ⋅ ∏ p c p ≈ 2 2 ⋅ 2 . 8 2 8 4 2 7 4 ⋅ 2 . 5 9 8 5 7 6 ⋅ 1 ⋅ 2 ≈ 1 . 8 3 7 4 7 0 7 0 0
sage: E.local_data()
magma: LocalInformation(E);
This elliptic curve is not semistable .
There
are 2 primes p \frak{p} p
of bad reduction .
This curve has non-trivial cyclic isogenies of degree d d d for d = d= d =
2, 4, 8 and 16.
Its isogeny class
1568.2-i
consists of curves linked by isogenies of
degrees dividing 16.
This elliptic curve is a Q \Q Q -curve .
It is not the base change of an elliptic curve defined over any subfield.