Base field \(\Q(\sqrt{19}) \)
Generator \(a\), with minimal polynomial \( x^{2} - 19 \); class number \(1\).
Weierstrass equation
This is a global minimal model.
Mordell-Weil group structure
\(\Z \oplus \Z/{6}\Z\)
Mordell-Weil generators
$P$ | $\hat{h}(P)$ | Order |
---|---|---|
$\left(-8 a - 34 : 308 a + 1344 : 1\right)$ | $0.76820190830213129887872077263061415216$ | $\infty$ |
$\left(84 a + 367 : 2317 a + 10101 : 1\right)$ | $0$ | $6$ |
Invariants
Conductor: | $\frak{N}$ | = | \((10)\) | = | \((-3a+13)^{2}\cdot(2a+9)\cdot(-2a+9)\) |
| |||||
Conductor norm: | $N(\frak{N})$ | = | \( 100 \) | = | \(2^{2}\cdot5\cdot5\) |
| |||||
Discriminant: | $\Delta$ | = | $-100$ | ||
Discriminant ideal: | $\frak{D}_{\mathrm{min}} = (\Delta)$ | = | \((-100)\) | = | \((-3a+13)^{4}\cdot(2a+9)^{2}\cdot(-2a+9)^{2}\) |
| |||||
Discriminant norm: | $N(\frak{D}_{\mathrm{min}}) = N(\Delta)$ | = | \( 10000 \) | = | \(2^{4}\cdot5^{2}\cdot5^{2}\) |
| |||||
j-invariant: | $j$ | = | \( \frac{21296}{25} \) | ||
| |||||
Endomorphism ring: | $\mathrm{End}(E)$ | = | \(\Z\) | ||
Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) | ||
| |||||
Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ |
BSD invariants
Analytic rank: | $r_{\mathrm{an}}$ | = | \( 1 \) |
|
|||
Mordell-Weil rank: | $r$ | = | \(1\) |
Regulator: | $\mathrm{Reg}(E/K)$ | ≈ | \( 0.76820190830213129887872077263061415216 \) |
Néron-Tate Regulator: | $\mathrm{Reg}_{\mathrm{NT}}(E/K)$ | ≈ | \( 1.53640381660426259775744154526122830432 \) |
Global period: | $\Omega(E/K)$ | ≈ | \( 15.954189885033128454448093899895896616 \) |
Tamagawa product: | $\prod_{\frak{p}}c_{\frak{p}}$ | = | \( 12 \) = \(3\cdot2\cdot2\) |
Torsion order: | $\#E(K)_{\mathrm{tor}}$ | = | \(6\) |
Special value: | $L^{(r)}(E/K,1)/r!$ | ≈ | \( 0.93724273597876365940861614775182280614 \) |
Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | = | \( 1 \) (rounded) |
BSD formula
$$\begin{aligned}0.937242736 \approx L'(E/K,1) & \overset{?}{=} \frac{ \# ะจ(E/K) \cdot \Omega(E/K) \cdot \mathrm{Reg}_{\mathrm{NT}}(E/K) \cdot \prod_{\mathfrak{p}} c_{\mathfrak{p}} } { \#E(K)_{\mathrm{tor}}^2 \cdot \left|d_K\right|^{1/2} } \\ & \approx \frac{ 1 \cdot 15.954190 \cdot 1.536404 \cdot 12 } { {6^2 \cdot 8.717798} } \\ & \approx 0.937242736 \end{aligned}$$
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 3 primes $\frak{p}$ of bad reduction.
$\mathfrak{p}$ | $N(\mathfrak{p})$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | \(\mathrm{ord}_{\mathfrak{p}}(\mathfrak{N}\)) | \(\mathrm{ord}_{\mathfrak{p}}(\mathfrak{D}_{\mathrm{min}}\)) | \(\mathrm{ord}_{\mathfrak{p}}(\mathrm{den}(j))\) |
---|---|---|---|---|---|---|---|---|
\((-3a+13)\) | \(2\) | \(3\) | \(IV\) | Additive | \(-1\) | \(2\) | \(4\) | \(0\) |
\((2a+9)\) | \(5\) | \(2\) | \(I_{2}\) | Non-split multiplicative | \(1\) | \(1\) | \(2\) | \(2\) |
\((-2a+9)\) | \(5\) | \(2\) | \(I_{2}\) | Non-split multiplicative | \(1\) | \(1\) | \(2\) | \(2\) |
Galois Representations
The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.
prime | Image of Galois Representation |
---|---|
\(2\) | 2B |
\(3\) | 3B.1.1 |
Isogenies and isogeny class
This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\)
2, 3 and 6.
Its isogeny class
100.1-b
consists of curves linked by isogenies of
degrees dividing 6.
Base change
This elliptic curve is a \(\Q\)-curve. It is the base change of the following 2 elliptic curves:
Base field | Curve |
---|---|
\(\Q\) | 20.a4 |
\(\Q\) | 28880.b4 |