Learn more

Refine search


Results (8 matches)

  displayed columns for results
Label Class Base field Conductor norm Rank Torsion CM Sato-Tate Regulator Period Leading coeff j-invariant Weierstrass coefficients Weierstrass equation
100.1-a1 100.1-a \(\Q(\sqrt{19}) \) \( 2^{2} \cdot 5^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.898413785$ $10.34365470$ 6.395800016 \( -\frac{20720464}{15625} \) \( \bigl[a + 1\) , \( a\) , \( 0\) , \( -120440 a - 524985\) , \( 71628793 a + 312222670\bigr] \) ${y}^2+\left(a+1\right){x}{y}={x}^{3}+a{x}^{2}+\left(-120440a-524985\right){x}+71628793a+312222670$
100.1-a2 100.1-a \(\Q(\sqrt{19}) \) \( 2^{2} \cdot 5^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $2.695241356$ $10.34365470$ 6.395800016 \( \frac{21296}{25} \) \( \bigl[a + 1\) , \( a\) , \( 0\) , \( 12160 a + 53005\) , \( -1497775 a - 6528650\bigr] \) ${y}^2+\left(a+1\right){x}{y}={x}^{3}+a{x}^{2}+\left(12160a+53005\right){x}-1497775a-6528650$
100.1-a3 100.1-a \(\Q(\sqrt{19}) \) \( 2^{2} \cdot 5^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $5.390482712$ $20.68730941$ 6.395800016 \( \frac{16384}{5} \) \( \bigl[0\) , \( -1\) , \( 0\) , \( -1\) , \( 0\bigr] \) ${y}^2={x}^{3}-{x}^{2}-{x}$
100.1-a4 100.1-a \(\Q(\sqrt{19}) \) \( 2^{2} \cdot 5^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $1.796827570$ $20.68730941$ 6.395800016 \( \frac{488095744}{125} \) \( \bigl[0\) , \( -1\) , \( 0\) , \( -41\) , \( 116\bigr] \) ${y}^2={x}^{3}-{x}^{2}-41{x}+116$
100.1-b1 100.1-b \(\Q(\sqrt{19}) \) \( 2^{2} \cdot 5^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $2.304605724$ $1.772687765$ 0.937242735 \( -\frac{20720464}{15625} \) \( \bigl[a + 1\) , \( a - 1\) , \( 0\) , \( -120441 a - 524988\) , \( -72515124 a - 316086098\bigr] \) ${y}^2+\left(a+1\right){x}{y}={x}^{3}+\left(a-1\right){x}^{2}+\left(-120441a-524988\right){x}-72515124a-316086098$
100.1-b2 100.1-b \(\Q(\sqrt{19}) \) \( 2^{2} \cdot 5^{2} \) $1$ $\Z/6\Z$ $\mathrm{SU}(2)$ $0.768201908$ $15.95418988$ 0.937242735 \( \frac{21296}{25} \) \( \bigl[a + 1\) , \( a - 1\) , \( 0\) , \( 12159 a + 53002\) , \( 1587234 a + 6918592\bigr] \) ${y}^2+\left(a+1\right){x}{y}={x}^{3}+\left(a-1\right){x}^{2}+\left(12159a+53002\right){x}+1587234a+6918592$
100.1-b3 100.1-b \(\Q(\sqrt{19}) \) \( 2^{2} \cdot 5^{2} \) $1$ $\Z/6\Z$ $\mathrm{SU}(2)$ $1.536403816$ $31.90837977$ 0.937242735 \( \frac{16384}{5} \) \( \bigl[0\) , \( 1\) , \( 0\) , \( -1\) , \( 0\bigr] \) ${y}^2={x}^{3}+{x}^{2}-{x}$
100.1-b4 100.1-b \(\Q(\sqrt{19}) \) \( 2^{2} \cdot 5^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $4.609211449$ $3.545375530$ 0.937242735 \( \frac{488095744}{125} \) \( \bigl[0\) , \( 1\) , \( 0\) , \( -41\) , \( -116\bigr] \) ${y}^2={x}^{3}+{x}^{2}-41{x}-116$
  displayed columns for results

  *The rank, regulator and analytic order of Ш are not known for all curves in the database; curves for which these are unknown will not appear in searches specifying one of these quantities.