Base field \(\Q(\sqrt{65}) \)
Generator \(a\), with minimal polynomial \( x^{2} - x - 16 \); class number \(2\).
Weierstrass equation
This is not a global minimal model: it is minimal at all primes except \((2,a)\). No global minimal model exists.
Mordell-Weil group structure
trivial
Invariants
Conductor: | $\frak{N}$ | = | \((5)\) | = | \((5,a+2)^{2}\) |
| |||||
Conductor norm: | $N(\frak{N})$ | = | \( 25 \) | = | \(5^{2}\) |
| |||||
Discriminant: | $\Delta$ | = | $85a+80$ | ||
Discriminant ideal: | $(\Delta)$ | = | \((85a+80)\) | = | \((2,a)^{12}\cdot(5,a+2)^{2}\) |
| |||||
Discriminant norm: | $N(\Delta)$ | = | \( 102400 \) | = | \(2^{12}\cdot5^{2}\) |
| |||||
Minimal discriminant: | $\frak{D}_{\mathrm{min}}$ | = | \((5)\) | = | \((5,a+2)^{2}\) |
Minimal discriminant norm: | $N(\frak{D}_{\mathrm{min}})$ | = | \( 25 \) | = | \(5^{2}\) |
j-invariant: | $j$ | = | \( 102400 \) | ||
| |||||
Endomorphism ring: | $\mathrm{End}(E)$ | = | \(\Z\) | ||
Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) | ||
| |||||
Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ |
BSD invariants
Analytic rank: | $r_{\mathrm{an}}$ | = | \( 0 \) |
|
|||
Mordell-Weil rank: | $r$ | = | \(0\) |
Regulator: | $\mathrm{Reg}(E/K)$ | = | \( 1 \) |
Néron-Tate Regulator: | $\mathrm{Reg}_{\mathrm{NT}}(E/K)$ | = | \( 1 \) |
Global period: | $\Omega(E/K)$ | ≈ | \( 59.516215878347235297228049088045659668 \) |
Tamagawa product: | $\prod_{\frak{p}}c_{\frak{p}}$ | = | \( 1 \) = \(1\cdot1\) |
Torsion order: | $\#E(K)_{\mathrm{tor}}$ | = | \(1\) |
Special value: | $L^{(r)}(E/K,1)/r!$ | ≈ | \( 7.3820780402248333656940430042274996872 \) |
Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | = | \( 1 \) (rounded) |
BSD formula
$$\begin{aligned}7.382078040 \approx L(E/K,1) & \overset{?}{=} \frac{ \# ะจ(E/K) \cdot \Omega(E/K) \cdot \mathrm{Reg}_{\mathrm{NT}}(E/K) \cdot \prod_{\mathfrak{p}} c_{\mathfrak{p}} } { \#E(K)_{\mathrm{tor}}^2 \cdot \left|d_K\right|^{1/2} } \\ & \approx \frac{ 1 \cdot 59.516216 \cdot 1 \cdot 1 } { {1^2 \cdot 8.062258} } \\ & \approx 7.382078040 \end{aligned}$$
Local data at primes of bad reduction
This elliptic curve is not semistable. There is only one prime $\frak{p}$ of bad reduction. Primes of good reduction for the curve but which divide the discriminant of the model above (if any) are included.
$\mathfrak{p}$ | $N(\mathfrak{p})$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | \(\mathrm{ord}_{\mathfrak{p}}(\mathfrak{N}\)) | \(\mathrm{ord}_{\mathfrak{p}}(\mathfrak{D}_{\mathrm{min}}\)) | \(\mathrm{ord}_{\mathfrak{p}}(\mathrm{den}(j))\) |
---|---|---|---|---|---|---|---|---|
\((2,a)\) | \(2\) | \(1\) | \(I_0\) | Good | \(1\) | \(0\) | \(0\) | \(0\) |
\((5,a+2)\) | \(5\) | \(1\) | \(II\) | Additive | \(1\) | \(2\) | \(2\) | \(0\) |
Galois Representations
The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.
prime | Image of Galois Representation |
---|---|
\(5\) | 5B.1.4 |
Isogenies and isogeny class
This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\)
5.
Its isogeny class
25.1-a
consists of curves linked by isogenies of
degree 5.
Base change
This elliptic curve is a \(\Q\)-curve.
It is not the base change of an elliptic curve defined over any subfield.