Properties

Label 2.2.65.1-25.1-a1
Base field \(\Q(\sqrt{65}) \)
Conductor norm \( 25 \)
CM no
Base change no
Q-curve yes
Torsion order \( 1 \)
Rank \( 0 \)

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Base field \(\Q(\sqrt{65}) \)

Generator \(a\), with minimal polynomial \( x^{2} - x - 16 \); class number \(2\).

Copy content comment:Define the base number field
 
Copy content sage:R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([-16, -1, 1]))
 
Copy content gp:K = nfinit(Polrev([-16, -1, 1]));
 
Copy content magma:R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-16, -1, 1]);
 

Weierstrass equation

\({y}^2+a{y}={x}^{3}+a{x}^{2}+\left(12a-48\right){x}-57a+256\)
Copy content comment:Define the curve
 
Copy content sage:E = EllipticCurve([K([0,0]),K([0,1]),K([0,1]),K([-48,12]),K([256,-57])])
 
Copy content gp:E = ellinit([Polrev([0,0]),Polrev([0,1]),Polrev([0,1]),Polrev([-48,12]),Polrev([256,-57])], K);
 
Copy content magma:E := EllipticCurve([K![0,0],K![0,1],K![0,1],K![-48,12],K![256,-57]]);
 

This is not a global minimal model: it is minimal at all primes except \((2,a)\). No global minimal model exists.

Copy content comment:Test whether it is a global minimal model
 
Copy content sage:E.is_global_minimal_model()
 

Mordell-Weil group structure

trivial

Invariants

Conductor: $\frak{N}$ = \((5)\) = \((5,a+2)^{2}\)
Copy content comment:Compute the conductor
 
Copy content sage:E.conductor()
 
Copy content gp:ellglobalred(E)[1]
 
Copy content magma:Conductor(E);
 
Conductor norm: $N(\frak{N})$ = \( 25 \) = \(5^{2}\)
Copy content comment:Compute the norm of the conductor
 
Copy content sage:E.conductor().norm()
 
Copy content gp:idealnorm(ellglobalred(E)[1])
 
Copy content magma:Norm(Conductor(E));
 
Discriminant: $\Delta$ = $85a+80$
Discriminant ideal: $(\Delta)$ = \((85a+80)\) = \((2,a)^{12}\cdot(5,a+2)^{2}\)
Copy content comment:Compute the discriminant
 
Copy content sage:E.discriminant()
 
Copy content gp:E.disc
 
Copy content magma:Discriminant(E);
 
Discriminant norm: $N(\Delta)$ = \( 102400 \) = \(2^{12}\cdot5^{2}\)
Copy content comment:Compute the norm of the discriminant
 
Copy content sage:E.discriminant().norm()
 
Copy content gp:norm(E.disc)
 
Copy content magma:Norm(Discriminant(E));
 
Minimal discriminant: $\frak{D}_{\mathrm{min}}$ = \((5)\) = \((5,a+2)^{2}\)
Minimal discriminant norm: $N(\frak{D}_{\mathrm{min}})$ = \( 25 \) = \(5^{2}\)
j-invariant: $j$ = \( 102400 \)
Copy content comment:Compute the j-invariant
 
Copy content sage:E.j_invariant()
 
Copy content gp:E.j
 
Copy content magma:jInvariant(E);
 
Endomorphism ring: $\mathrm{End}(E)$ = \(\Z\)   
Geometric endomorphism ring: $\mathrm{End}(E_{\overline{\Q}})$ = \(\Z\)    (no potential complex multiplication)
Copy content comment:Test for Complex Multiplication
 
Copy content sage:E.has_cm(), E.cm_discriminant()
 
Copy content magma:HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{ST}(E)$ = $\mathrm{SU}(2)$

BSD invariants

Analytic rank: $r_{\mathrm{an}}$= \( 0 \)
Copy content comment:Compute the Mordell-Weil rank
 
Copy content sage:E.rank()
 
Copy content magma:Rank(E);
 
Mordell-Weil rank: $r$ = \(0\)
Regulator: $\mathrm{Reg}(E/K)$ = \( 1 \)
Néron-Tate Regulator: $\mathrm{Reg}_{\mathrm{NT}}(E/K)$ = \( 1 \)
Global period: $\Omega(E/K)$ \( 59.516215878347235297228049088045659668 \)
Tamagawa product: $\prod_{\frak{p}}c_{\frak{p}}$= \( 1 \)  =  \(1\cdot1\)
Torsion order: $\#E(K)_{\mathrm{tor}}$= \(1\)
Special value: $L^{(r)}(E/K,1)/r!$ \( 7.3820780402248333656940430042274996872 \)
Analytic order of Ш: Ш${}_{\mathrm{an}}$= \( 1 \) (rounded)

BSD formula

$$\begin{aligned}7.382078040 \approx L(E/K,1) & \overset{?}{=} \frac{ \# ะจ(E/K) \cdot \Omega(E/K) \cdot \mathrm{Reg}_{\mathrm{NT}}(E/K) \cdot \prod_{\mathfrak{p}} c_{\mathfrak{p}} } { \#E(K)_{\mathrm{tor}}^2 \cdot \left|d_K\right|^{1/2} } \\ & \approx \frac{ 1 \cdot 59.516216 \cdot 1 \cdot 1 } { {1^2 \cdot 8.062258} } \\ & \approx 7.382078040 \end{aligned}$$

Local data at primes of bad reduction

Copy content comment:Compute the local reduction data at primes of bad reduction
 
Copy content sage:E.local_data()
 
Copy content magma:LocalInformation(E);
 

This elliptic curve is not semistable. There is only one prime $\frak{p}$ of bad reduction. Primes of good reduction for the curve but which divide the discriminant of the model above (if any) are included.

$\mathfrak{p}$ $N(\mathfrak{p})$ Tamagawa number Kodaira symbol Reduction type Root number \(\mathrm{ord}_{\mathfrak{p}}(\mathfrak{N}\)) \(\mathrm{ord}_{\mathfrak{p}}(\mathfrak{D}_{\mathrm{min}}\)) \(\mathrm{ord}_{\mathfrak{p}}(\mathrm{den}(j))\)
\((2,a)\) \(2\) \(1\) \(I_0\) Good \(1\) \(0\) \(0\) \(0\)
\((5,a+2)\) \(5\) \(1\) \(II\) Additive \(1\) \(2\) \(2\) \(0\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(5\) 5B.1.4

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 5.
Its isogeny class 25.1-a consists of curves linked by isogenies of degree 5.

Base change

This elliptic curve is a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.