Label
Class
Class size
Class degree
Base field
Field degree
Field signature
Conductor
Conductor norm
Discriminant norm
Root analytic conductor
Bad primes
Rank
Torsion
CM
CM
Sato-Tate
$\Q$-curve
Base change
Semistable
Potentially good
Nonmax $\ell$
mod-$\ell$ images
$Ш_{\textrm{an}}$
Tamagawa
Regulator
Period
Leading coeff
j-invariant
Weierstrass coefficients
Weierstrass equation
25.1-a1
25.1-a
$2$
$5$
\(\Q(\sqrt{65}) \)
$2$
$[2, 0]$
25.1
\( 5^{2} \)
\( 2^{12} \cdot 5^{2} \)
$1.61094$
$(5,a+2)$
0
$\mathsf{trivial}$
$\textsf{no}$
$\mathrm{SU}(2)$
✓
✓
$5$
5B.1.4
$1$
\( 1 \)
$1$
$59.51621587$
7.382078040
\( 102400 \)
\( \bigl[0\) , \( a\) , \( a\) , \( 12 a - 48\) , \( -57 a + 256\bigr] \)
${y}^2+a{y}={x}^{3}+a{x}^{2}+\left(12a-48\right){x}-57a+256$
25.1-a2
25.1-a
$2$
$5$
\(\Q(\sqrt{65}) \)
$2$
$[2, 0]$
25.1
\( 5^{2} \)
\( 2^{12} \cdot 5^{10} \)
$1.61094$
$(5,a+2)$
0
$\mathsf{trivial}$
$\textsf{no}$
$\mathrm{SU}(2)$
✓
✓
$5$
5B.1.3
$25$
\( 1 \)
$1$
$2.380648635$
7.382078040
\( 27258880 \)
\( \bigl[0\) , \( a\) , \( a\) , \( 642 a - 2928\) , \( 17127 a - 77696\bigr] \)
${y}^2+a{y}={x}^{3}+a{x}^{2}+\left(642a-2928\right){x}+17127a-77696$
25.1-b1
25.1-b
$1$
$1$
\(\Q(\sqrt{65}) \)
$2$
$[2, 0]$
25.1
\( 5^{2} \)
\( 5^{10} \)
$1.61094$
$(5,a+2)$
0
$\mathsf{trivial}$
$\textsf{no}$
$\mathrm{SU}(2)$
✓
✓
$1$
\( 1 \)
$1$
$7.359657410$
0.912853153
\( 1715 \)
\( \bigl[1\) , \( a + 1\) , \( a + 1\) , \( -116 a + 534\) , \( -31 a + 140\bigr] \)
${y}^2+{x}{y}+\left(a+1\right){y}={x}^{3}+\left(a+1\right){x}^{2}+\left(-116a+534\right){x}-31a+140$
25.1-c1
25.1-c
$1$
$1$
\(\Q(\sqrt{65}) \)
$2$
$[2, 0]$
25.1
\( 5^{2} \)
\( 2^{12} \cdot 5^{10} \)
$1.61094$
$(5,a+2)$
0
$\mathsf{trivial}$
$\textsf{no}$
$\mathrm{SU}(2)$
✓
✓
$1$
\( 1 \)
$1$
$7.359657410$
0.912853153
\( 1715 \)
\( \bigl[a\) , \( -1\) , \( 0\) , \( -25 a + 120\) , \( -30 a + 140\bigr] \)
${y}^2+a{x}{y}={x}^{3}-{x}^{2}+\left(-25a+120\right){x}-30a+140$
25.1-d1
25.1-d
$2$
$5$
\(\Q(\sqrt{65}) \)
$2$
$[2, 0]$
25.1
\( 5^{2} \)
\( 5^{2} \)
$1.61094$
$(5,a+2)$
0
$\Z/5\Z$
$\textsf{no}$
$\mathrm{SU}(2)$
✓
✓
$5$
5B.1.1
$1$
\( 1 \)
$1$
$59.51621587$
0.295283121
\( 102400 \)
\( \bigl[0\) , \( a - 1\) , \( 1\) , \( 53 a - 236\) , \( -502 a + 2276\bigr] \)
${y}^2+{y}={x}^{3}+\left(a-1\right){x}^{2}+\left(53a-236\right){x}-502a+2276$
25.1-d2
25.1-d
$2$
$5$
\(\Q(\sqrt{65}) \)
$2$
$[2, 0]$
25.1
\( 5^{2} \)
\( 5^{10} \)
$1.61094$
$(5,a+2)$
0
$\mathsf{trivial}$
$\textsf{no}$
$\mathrm{SU}(2)$
✓
✓
$5$
5B.1.2
$1$
\( 1 \)
$1$
$2.380648635$
0.295283121
\( 27258880 \)
\( \bigl[0\) , \( a - 1\) , \( 1\) , \( 2933 a - 13286\) , \( 169196 a - 766648\bigr] \)
${y}^2+{y}={x}^{3}+\left(a-1\right){x}^{2}+\left(2933a-13286\right){x}+169196a-766648$
Download
displayed columns for
results
to
Text
Pari/GP
SageMath
Magma
Oscar
CSV
*The rank, regulator and analytic order of Ш are
not known for all curves in the database; curves for which these are
unknown will not appear in searches specifying one of these
quantities.