Base field \(\Q(\sqrt{65}) \)
Generator \(a\), with minimal polynomial \( x^{2} - x - 16 \); class number \(2\).
Weierstrass equation
This is a global minimal model.
Mordell-Weil group structure
\(\Z/{2}\Z \oplus \Z/{2}\Z\)
Mordell-Weil generators
$P$ | $\hat{h}(P)$ | Order |
---|---|---|
$\left(-\frac{5}{4} a - 1 : \frac{1}{8} a : 1\right)$ | $0$ | $2$ |
$\left(-\frac{3}{4} a - \frac{13}{4} : -\frac{1}{8} a + \frac{9}{8} : 1\right)$ | $0$ | $2$ |
Invariants
Conductor: | $\frak{N}$ | = | \((-a+6)\) | = | \((2,a)\cdot(7,a+1)\) |
| |||||
Conductor norm: | $N(\frak{N})$ | = | \( 14 \) | = | \(2\cdot7\) |
| |||||
Discriminant: | $\Delta$ | = | $17a+80$ | ||
Discriminant ideal: | $\frak{D}_{\mathrm{min}} = (\Delta)$ | = | \((17a+80)\) | = | \((2,a)^{6}\cdot(7,a+1)^{2}\) |
| |||||
Discriminant norm: | $N(\frak{D}_{\mathrm{min}}) = N(\Delta)$ | = | \( 3136 \) | = | \(2^{6}\cdot7^{2}\) |
| |||||
j-invariant: | $j$ | = | \( \frac{82417844415}{3136} a + \frac{293587460753}{3136} \) | ||
| |||||
Endomorphism ring: | $\mathrm{End}(E)$ | = | \(\Z\) | ||
Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) | ||
| |||||
Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ |
BSD invariants
Analytic rank: | $r_{\mathrm{an}}$ | = | \( 0 \) |
|
|||
Mordell-Weil rank: | $r$ | = | \(0\) |
Regulator: | $\mathrm{Reg}(E/K)$ | = | \( 1 \) |
Néron-Tate Regulator: | $\mathrm{Reg}_{\mathrm{NT}}(E/K)$ | = | \( 1 \) |
Global period: | $\Omega(E/K)$ | ≈ | \( 5.2536229399654899015358363758041480700 \) |
Tamagawa product: | $\prod_{\frak{p}}c_{\frak{p}}$ | = | \( 12 \) = \(( 2 \cdot 3 )\cdot2\) |
Torsion order: | $\#E(K)_{\mathrm{tor}}$ | = | \(4\) |
Special value: | $L^{(r)}(E/K,1)/r!$ | ≈ | \( 1.9548951809711897129383853307424160330 \) |
Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | = | \( 4 \) (rounded) |
BSD formula
$$\begin{aligned}1.954895181 \approx L(E/K,1) & \overset{?}{=} \frac{ \# ะจ(E/K) \cdot \Omega(E/K) \cdot \mathrm{Reg}_{\mathrm{NT}}(E/K) \cdot \prod_{\mathfrak{p}} c_{\mathfrak{p}} } { \#E(K)_{\mathrm{tor}}^2 \cdot \left|d_K\right|^{1/2} } \\ & \approx \frac{ 4 \cdot 5.253623 \cdot 1 \cdot 12 } { {4^2 \cdot 8.062258} } \\ & \approx 1.954895181 \end{aligned}$$
Local data at primes of bad reduction
This elliptic curve is semistable. There are 2 primes $\frak{p}$ of bad reduction.
$\mathfrak{p}$ | $N(\mathfrak{p})$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | \(\mathrm{ord}_{\mathfrak{p}}(\mathfrak{N}\)) | \(\mathrm{ord}_{\mathfrak{p}}(\mathfrak{D}_{\mathrm{min}}\)) | \(\mathrm{ord}_{\mathfrak{p}}(\mathrm{den}(j))\) |
---|---|---|---|---|---|---|---|---|
\((2,a)\) | \(2\) | \(6\) | \(I_{6}\) | Split multiplicative | \(-1\) | \(1\) | \(6\) | \(6\) |
\((7,a+1)\) | \(7\) | \(2\) | \(I_{2}\) | Split multiplicative | \(-1\) | \(1\) | \(2\) | \(2\) |
Galois Representations
The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.
prime | Image of Galois Representation |
---|---|
\(2\) | 2Cs |
Isogenies and isogeny class
This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\)
2.
Its isogeny class
14.3-c
consists of curves linked by isogenies of
degrees dividing 4.
Base change
This elliptic curve is not a \(\Q\)-curve.
It is not the base change of an elliptic curve defined over any subfield.