Properties

Label 2.2.65.1-100.2-b2
Base field \(\Q(\sqrt{65}) \)
Conductor norm \( 100 \)
CM no
Base change no
Q-curve no
Torsion order \( 2 \)
Rank \( 1 \)

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Base field \(\Q(\sqrt{65}) \)

Generator \(a\), with minimal polynomial \( x^{2} - x - 16 \); class number \(2\).

Copy content comment:Define the base number field
 
Copy content sage:R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([-16, -1, 1]))
 
Copy content gp:K = nfinit(Polrev([-16, -1, 1]));
 
Copy content magma:R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-16, -1, 1]);
 

Weierstrass equation

\({y}^2+a{x}{y}={x}^{3}-{x}^{2}+\left(-545a+2475\right){x}+3610a-16355\)
Copy content comment:Define the curve
 
Copy content sage:E = EllipticCurve([K([0,1]),K([-1,0]),K([0,0]),K([2475,-545]),K([-16355,3610])])
 
Copy content gp:E = ellinit([Polrev([0,1]),Polrev([-1,0]),Polrev([0,0]),Polrev([2475,-545]),Polrev([-16355,3610])], K);
 
Copy content magma:E := EllipticCurve([K![0,1],K![-1,0],K![0,0],K![2475,-545],K![-16355,3610]]);
 

This is not a global minimal model: it is minimal at all primes except \((2,a)\). No global minimal model exists.

Copy content comment:Test whether it is a global minimal model
 
Copy content sage:E.is_global_minimal_model()
 

Mordell-Weil group structure

\(\Z \oplus \Z/{2}\Z\)

Mordell-Weil generators

$P$$\hat{h}(P)$Order
$\left(-a + 7 : 13 a - 72 : 1\right)$$1.6691378484290617787436997951507660342$$\infty$
$\left(-a + 3 : -a + 8 : 1\right)$$0$$2$

Invariants

Conductor: $\frak{N}$ = \((-5a+20)\) = \((2,a)^{2}\cdot(5,a+2)^{2}\)
Copy content comment:Compute the conductor
 
Copy content sage:E.conductor()
 
Copy content gp:ellglobalred(E)[1]
 
Copy content magma:Conductor(E);
 
Conductor norm: $N(\frak{N})$ = \( 100 \) = \(2^{2}\cdot5^{2}\)
Copy content comment:Compute the norm of the conductor
 
Copy content sage:E.conductor().norm()
 
Copy content gp:idealnorm(ellglobalred(E)[1])
 
Copy content magma:Norm(Conductor(E));
 
Discriminant: $\Delta$ = $190625a+330000$
Discriminant ideal: $(\Delta)$ = \((190625a+330000)\) = \((2,a)^{20}\cdot(5,a+2)^{8}\)
Copy content comment:Compute the discriminant
 
Copy content sage:E.discriminant()
 
Copy content gp:E.disc
 
Copy content magma:Discriminant(E);
 
Discriminant norm: $N(\Delta)$ = \( -409600000000 \) = \(-2^{20}\cdot5^{8}\)
Copy content comment:Compute the norm of the discriminant
 
Copy content sage:E.discriminant().norm()
 
Copy content gp:norm(E.disc)
 
Copy content magma:Norm(Discriminant(E));
 
Minimal discriminant: $\frak{D}_{\mathrm{min}}$ = \((625a+10000)\) = \((2,a)^{8}\cdot(5,a+2)^{8}\)
Minimal discriminant norm: $N(\frak{D}_{\mathrm{min}})$ = \( -100000000 \) = \(-2^{8}\cdot5^{8}\)
j-invariant: $j$ = \( \frac{2941}{5} a + \frac{18368}{5} \)
Copy content comment:Compute the j-invariant
 
Copy content sage:E.j_invariant()
 
Copy content gp:E.j
 
Copy content magma:jInvariant(E);
 
Endomorphism ring: $\mathrm{End}(E)$ = \(\Z\)   
Geometric endomorphism ring: $\mathrm{End}(E_{\overline{\Q}})$ = \(\Z\)    (no potential complex multiplication)
Copy content comment:Test for Complex Multiplication
 
Copy content sage:E.has_cm(), E.cm_discriminant()
 
Copy content magma:HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{ST}(E)$ = $\mathrm{SU}(2)$

BSD invariants

Analytic rank: $r_{\mathrm{an}}$= \( 1 \)
Copy content comment:Compute the Mordell-Weil rank
 
Copy content sage:E.rank()
 
Copy content magma:Rank(E);
 
Mordell-Weil rank: $r$ = \(1\)
Regulator: $\mathrm{Reg}(E/K)$ \( 1.6691378484290617787436997951507660342 \)
Néron-Tate Regulator: $\mathrm{Reg}_{\mathrm{NT}}(E/K)$ \( 3.3382756968581235574873995903015320684 \)
Global period: $\Omega(E/K)$ \( 6.6693304288843908392419685480461369784 \)
Tamagawa product: $\prod_{\frak{p}}c_{\frak{p}}$= \( 6 \)  =  \(3\cdot2\)
Torsion order: $\#E(K)_{\mathrm{tor}}$= \(2\)
Special value: $L^{(r)}(E/K,1)/r!$ \( 4.1422758450806870452331461152533165865 \)
Analytic order of Ш: Ш${}_{\mathrm{an}}$= \( 1 \) (rounded)

BSD formula

$$\begin{aligned}4.142275845 \approx L'(E/K,1) & \overset{?}{=} \frac{ \# ะจ(E/K) \cdot \Omega(E/K) \cdot \mathrm{Reg}_{\mathrm{NT}}(E/K) \cdot \prod_{\mathfrak{p}} c_{\mathfrak{p}} } { \#E(K)_{\mathrm{tor}}^2 \cdot \left|d_K\right|^{1/2} } \\ & \approx \frac{ 1 \cdot 6.669330 \cdot 3.338276 \cdot 6 } { {2^2 \cdot 8.062258} } \\ & \approx 4.142275845 \end{aligned}$$

Local data at primes of bad reduction

Copy content comment:Compute the local reduction data at primes of bad reduction
 
Copy content sage:E.local_data()
 
Copy content magma:LocalInformation(E);
 

This elliptic curve is not semistable. There are 2 primes $\frak{p}$ of bad reduction. Primes of good reduction for the curve but which divide the discriminant of the model above (if any) are included.

$\mathfrak{p}$ $N(\mathfrak{p})$ Tamagawa number Kodaira symbol Reduction type Root number \(\mathrm{ord}_{\mathfrak{p}}(\mathfrak{N}\)) \(\mathrm{ord}_{\mathfrak{p}}(\mathfrak{D}_{\mathrm{min}}\)) \(\mathrm{ord}_{\mathfrak{p}}(\mathrm{den}(j))\)
\((2,a)\) \(2\) \(3\) \(IV^{*}\) Additive \(-1\) \(2\) \(8\) \(0\)
\((5,a+2)\) \(5\) \(2\) \(I_{2}^{*}\) Additive \(1\) \(2\) \(8\) \(2\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2.
Its isogeny class 100.2-b consists of curves linked by isogenies of degree 2.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.