Learn more

Refine search


Results (1-50 of 60 matches)

Next   displayed columns for results
Label Class Base field Conductor norm Rank Torsion CM Sato-Tate Regulator Period Leading coeff j-invariant Weierstrass coefficients Weierstrass equation
192.6-a1 192.6-a \(\Q(\sqrt{57}) \) \( 2^{6} \cdot 3 \) $1$ $\mathsf{trivial}$ $\mathrm{SU}(2)$ $0.307981421$ $17.75724302$ 2.897494500 \( -\frac{19456}{9} a - \frac{63488}{9} \) \( \bigl[0\) , \( a\) , \( a + 1\) , \( -10267 a - 33620\) , \( 1142517 a + 3741646\bigr] \) ${y}^2+\left(a+1\right){y}={x}^{3}+a{x}^{2}+\left(-10267a-33620\right){x}+1142517a+3741646$
192.6-b1 192.6-b \(\Q(\sqrt{57}) \) \( 2^{6} \cdot 3 \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $13.30619092$ 0.881224021 \( -\frac{682795351}{3} a + \frac{2918892701}{3} \) \( \bigl[a + 1\) , \( -a + 1\) , \( a + 1\) , \( -290 a - 942\) , \( -13768 a - 45084\bigr] \) ${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(-290a-942\right){x}-13768a-45084$
192.6-b2 192.6-b \(\Q(\sqrt{57}) \) \( 2^{6} \cdot 3 \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $3.326547732$ 0.881224021 \( -\frac{30245593}{81} a + \frac{43142695}{27} \) \( \bigl[a + 1\) , \( -a + 1\) , \( a + 1\) , \( 100 a - 436\) , \( 1280 a - 5476\bigr] \) ${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(100a-436\right){x}+1280a-5476$
192.6-b3 192.6-b \(\Q(\sqrt{57}) \) \( 2^{6} \cdot 3 \) 0 $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $13.30619092$ 0.881224021 \( -\frac{833}{9} a + \frac{20207}{9} \) \( \bigl[a + 1\) , \( -a + 1\) , \( a + 1\) , \( 5 a - 31\) , \( 24 a - 108\bigr] \) ${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(5a-31\right){x}+24a-108$
192.6-b4 192.6-b \(\Q(\sqrt{57}) \) \( 2^{6} \cdot 3 \) 0 $\Z/4\Z$ $\mathrm{SU}(2)$ $1$ $13.30619092$ 0.881224021 \( \frac{49147}{3} a + 54795 \) \( \bigl[a + 1\) , \( a\) , \( 0\) , \( -45 a - 146\) , \( 194 a + 635\bigr] \) ${y}^2+\left(a+1\right){x}{y}={x}^{3}+a{x}^{2}+\left(-45a-146\right){x}+194a+635$
192.6-b5 192.6-b \(\Q(\sqrt{57}) \) \( 2^{6} \cdot 3 \) 0 $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $13.30619092$ 0.881224021 \( \frac{263081}{3} a + 329391 \) \( \bigl[a + 1\) , \( -1\) , \( a + 1\) , \( 9217 a - 39404\) , \( -915567 a + 3913974\bigr] \) ${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}-{x}^{2}+\left(9217a-39404\right){x}-915567a+3913974$
192.6-b6 192.6-b \(\Q(\sqrt{57}) \) \( 2^{6} \cdot 3 \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $3.326547732$ 0.881224021 \( \frac{196674895963}{3} a + \frac{644094003067}{3} \) \( \bigl[a + 1\) , \( -1\) , \( a + 1\) , \( -1168 a + 4991\) , \( -2865485 a + 12249712\bigr] \) ${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}-{x}^{2}+\left(-1168a+4991\right){x}-2865485a+12249712$
192.6-c1 192.6-c \(\Q(\sqrt{57}) \) \( 2^{6} \cdot 3 \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.200860895$ $23.18112979$ 3.083632177 \( -\frac{864199}{27} a + \frac{3692909}{27} \) \( \bigl[a + 1\) , \( a - 1\) , \( a + 1\) , \( -336 a - 1100\) , \( 36572 a + 119768\bigr] \) ${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+\left(a-1\right){x}^{2}+\left(-336a-1100\right){x}+36572a+119768$
192.6-c2 192.6-c \(\Q(\sqrt{57}) \) \( 2^{6} \cdot 3 \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.100430447$ $11.59056489$ 3.083632177 \( \frac{7009331}{243} a + \frac{7792021}{81} \) \( \bigl[a + 1\) , \( a - 1\) , \( a + 1\) , \( -10921 a - 35765\) , \( 1165450 a + 3816750\bigr] \) ${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+\left(a-1\right){x}^{2}+\left(-10921a-35765\right){x}+1165450a+3816750$
192.6-d1 192.6-d \(\Q(\sqrt{57}) \) \( 2^{6} \cdot 3 \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $17.01627867$ 1.126930584 \( -\frac{20041777}{12} a + \frac{42838465}{6} \) \( \bigl[a + 1\) , \( -1\) , \( 0\) , \( 2 a + 1\) , \( 9 a + 34\bigr] \) ${y}^2+\left(a+1\right){x}{y}={x}^{3}-{x}^{2}+\left(2a+1\right){x}+9a+34$
192.6-d2 192.6-d \(\Q(\sqrt{57}) \) \( 2^{6} \cdot 3 \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $8.508139335$ 1.126930584 \( \frac{152551}{768} a + \frac{476915}{384} \) \( \bigl[a + 1\) , \( -1\) , \( 0\) , \( -71829 a - 235234\) , \( -8626826 a - 28252141\bigr] \) ${y}^2+\left(a+1\right){x}{y}={x}^{3}-{x}^{2}+\left(-71829a-235234\right){x}-8626826a-28252141$
192.6-d3 192.6-d \(\Q(\sqrt{57}) \) \( 2^{6} \cdot 3 \) 0 $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $17.01627867$ 1.126930584 \( \frac{436639}{48} a + \frac{819427}{24} \) \( \bigl[a + 1\) , \( a\) , \( a + 1\) , \( 142 a - 579\) , \( -1418 a + 6107\bigr] \) ${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+a{x}^{2}+\left(142a-579\right){x}-1418a+6107$
192.6-d4 192.6-d \(\Q(\sqrt{57}) \) \( 2^{6} \cdot 3 \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $8.508139335$ 1.126930584 \( \frac{24913903427}{36} a + \frac{4532864557}{2} \) \( \bigl[a + 1\) , \( a\) , \( a + 1\) , \( 737 a - 3124\) , \( 19386 a - 82833\bigr] \) ${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+a{x}^{2}+\left(737a-3124\right){x}+19386a-82833$
192.6-e1 192.6-e \(\Q(\sqrt{57}) \) \( 2^{6} \cdot 3 \) $1$ $\mathsf{trivial}$ $\mathrm{SU}(2)$ $0.167246666$ $25.84169008$ 2.289817913 \( \frac{512}{3} a + \frac{1024}{3} \) \( \bigl[0\) , \( 1\) , \( a + 1\) , \( 97 a + 318\) , \( 823 a + 2694\bigr] \) ${y}^2+\left(a+1\right){y}={x}^{3}+{x}^{2}+\left(97a+318\right){x}+823a+2694$
192.6-f1 192.6-f \(\Q(\sqrt{57}) \) \( 2^{6} \cdot 3 \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $1.097791926$ $21.05953938$ 3.062185337 \( -\frac{511}{3} a + \frac{4373}{3} \) \( \bigl[a + 1\) , \( a\) , \( a + 1\) , \( 1456 a + 4767\) , \( 73908 a + 242041\bigr] \) ${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+a{x}^{2}+\left(1456a+4767\right){x}+73908a+242041$
192.6-f2 192.6-f \(\Q(\sqrt{57}) \) \( 2^{6} \cdot 3 \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.548895963$ $42.11907876$ 3.062185337 \( -150535 a + \frac{1941703}{3} \) \( \bigl[a + 1\) , \( -a + 1\) , \( 0\) , \( -4 a - 3\) , \( 6\bigr] \) ${y}^2+\left(a+1\right){x}{y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(-4a-3\right){x}+6$
192.6-g1 192.6-g \(\Q(\sqrt{57}) \) \( 2^{6} \cdot 3 \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $13.86747782$ 1.836792309 \( \frac{625}{3} a + \frac{2125}{3} \) \( \bigl[a + 1\) , \( -a + 1\) , \( 0\) , \( 6 a + 30\) , \( 13 a + 49\bigr] \) ${y}^2+\left(a+1\right){x}{y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(6a+30\right){x}+13a+49$
192.6-g2 192.6-g \(\Q(\sqrt{57}) \) \( 2^{6} \cdot 3 \) 0 $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $27.73495565$ 1.836792309 \( -\frac{7375}{3} a + 12375 \) \( \bigl[a + 1\) , \( -1\) , \( 0\) , \( 10 a - 31\) , \( -23 a + 106\bigr] \) ${y}^2+\left(a+1\right){x}{y}={x}^{3}-{x}^{2}+\left(10a-31\right){x}-23a+106$
192.6-g3 192.6-g \(\Q(\sqrt{57}) \) \( 2^{6} \cdot 3 \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $13.86747782$ 1.836792309 \( -\frac{153722875}{3} a + \frac{657508625}{3} \) \( \bigl[a + 1\) , \( -1\) , \( 0\) , \( 135 a - 566\) , \( -1618 a + 6923\bigr] \) ${y}^2+\left(a+1\right){x}{y}={x}^{3}-{x}^{2}+\left(135a-566\right){x}-1618a+6923$
192.6-g4 192.6-g \(\Q(\sqrt{57}) \) \( 2^{6} \cdot 3 \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $27.73495565$ 1.836792309 \( \frac{885625}{9} a + \frac{2934125}{9} \) \( \bigl[a + 1\) , \( a\) , \( a + 1\) , \( 4129 a - 17623\) , \( 203103 a - 868203\bigr] \) ${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+a{x}^{2}+\left(4129a-17623\right){x}+203103a-868203$
192.6-h1 192.6-h \(\Q(\sqrt{57}) \) \( 2^{6} \cdot 3 \) 0 $\mathsf{trivial}$ $\mathrm{SU}(2)$ $1$ $4.397124811$ 5.824134090 \( -\frac{3544576}{81} a - \frac{34825216}{243} \) \( \bigl[0\) , \( 1\) , \( a + 1\) , \( -63 a - 206\) , \( -552 a - 1809\bigr] \) ${y}^2+\left(a+1\right){y}={x}^{3}+{x}^{2}+\left(-63a-206\right){x}-552a-1809$
192.6-i1 192.6-i \(\Q(\sqrt{57}) \) \( 2^{6} \cdot 3 \) $2$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.249045257$ $17.95446427$ 3.553567344 \( -\frac{39781}{9} a + \frac{162551}{9} \) \( \bigl[a + 1\) , \( a - 1\) , \( a + 1\) , \( 3270 a - 13958\) , \( 188954 a - 807730\bigr] \) ${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+\left(a-1\right){x}^{2}+\left(3270a-13958\right){x}+188954a-807730$
192.6-i2 192.6-i \(\Q(\sqrt{57}) \) \( 2^{6} \cdot 3 \) $2$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.062261314$ $8.977232136$ 3.553567344 \( -\frac{398173643}{729} a + \frac{1703867237}{729} \) \( \bigl[a + 1\) , \( a - 1\) , \( a + 1\) , \( 112030 a - 478898\) , \( -39758424 a + 169964004\bigr] \) ${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+\left(a-1\right){x}^{2}+\left(112030a-478898\right){x}-39758424a+169964004$
192.6-i3 192.6-i \(\Q(\sqrt{57}) \) \( 2^{6} \cdot 3 \) $2$ $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $0.249045257$ $17.95446427$ 3.553567344 \( \frac{7540169}{27} a + \frac{8257039}{9} \) \( \bigl[a + 1\) , \( a - 1\) , \( a + 1\) , \( 7835 a - 33473\) , \( -471092 a + 2013912\bigr] \) ${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+\left(a-1\right){x}^{2}+\left(7835a-33473\right){x}-471092a+2013912$
192.6-i4 192.6-i \(\Q(\sqrt{57}) \) \( 2^{6} \cdot 3 \) $2$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.249045257$ $8.977232136$ 3.553567344 \( \frac{5309980655707}{9} a + \frac{17389747083643}{9} \) \( \bigl[a + 1\) , \( a - 1\) , \( a + 1\) , \( -23320 a + 99712\) , \( -3208964 a + 13718088\bigr] \) ${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+\left(a-1\right){x}^{2}+\left(-23320a+99712\right){x}-3208964a+13718088$
192.6-j1 192.6-j \(\Q(\sqrt{57}) \) \( 2^{6} \cdot 3 \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $3.128105331$ $8.189771841$ 3.393249107 \( \frac{625}{3} a + \frac{2125}{3} \) \( \bigl[a + 1\) , \( 1\) , \( a + 1\) , \( -163 a + 704\) , \( 17837 a - 76240\bigr] \) ${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+{x}^{2}+\left(-163a+704\right){x}+17837a-76240$
192.6-j2 192.6-j \(\Q(\sqrt{57}) \) \( 2^{6} \cdot 3 \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1.564052665$ $16.37954368$ 3.393249107 \( -\frac{7375}{3} a + 12375 \) \( \bigl[a + 1\) , \( a - 1\) , \( a + 1\) , \( -918 a - 3006\) , \( -11166 a - 36570\bigr] \) ${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+\left(a-1\right){x}^{2}+\left(-918a-3006\right){x}-11166a-36570$
192.6-j3 192.6-j \(\Q(\sqrt{57}) \) \( 2^{6} \cdot 3 \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $3.128105331$ $8.189771841$ 3.393249107 \( -\frac{153722875}{3} a + \frac{657508625}{3} \) \( \bigl[a + 1\) , \( a - 1\) , \( a + 1\) , \( -8593 a - 28141\) , \( 807364 a + 2644048\bigr] \) ${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+\left(a-1\right){x}^{2}+\left(-8593a-28141\right){x}+807364a+2644048$
192.6-j4 192.6-j \(\Q(\sqrt{57}) \) \( 2^{6} \cdot 3 \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.782026332$ $16.37954368$ 3.393249107 \( \frac{885625}{9} a + \frac{2934125}{9} \) \( \bigl[a + 1\) , \( 1\) , \( a + 1\) , \( -3 a - 11\) , \( -18 a - 60\bigr] \) ${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+{x}^{2}+\left(-3a-11\right){x}-18a-60$
192.6-k1 192.6-k \(\Q(\sqrt{57}) \) \( 2^{6} \cdot 3 \) $1$ $\mathsf{trivial}$ $\mathrm{SU}(2)$ $0.522611832$ $30.54628654$ 8.457854761 \( -\frac{62998269440}{3} a - 68771386368 \) \( \bigl[0\) , \( -a\) , \( a + 1\) , \( 29722 a - 127053\) , \( -5712610 a + 24420925\bigr] \) ${y}^2+\left(a+1\right){y}={x}^{3}-a{x}^{2}+\left(29722a-127053\right){x}-5712610a+24420925$
192.6-l1 192.6-l \(\Q(\sqrt{57}) \) \( 2^{6} \cdot 3 \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $6.318557422$ $3.672344642$ 3.073434351 \( -\frac{20041777}{12} a + \frac{42838465}{6} \) \( \bigl[a + 1\) , \( -a\) , \( 0\) , \( 67389 a - 288080\) , \( 18602828 a - 79525549\bigr] \) ${y}^2+\left(a+1\right){x}{y}={x}^{3}-a{x}^{2}+\left(67389a-288080\right){x}+18602828a-79525549$
192.6-l2 192.6-l \(\Q(\sqrt{57}) \) \( 2^{6} \cdot 3 \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $1.579639355$ $7.344689285$ 3.073434351 \( \frac{152551}{768} a + \frac{476915}{384} \) \( \bigl[a + 1\) , \( -a\) , \( 0\) , \( -2 a + 5\) , \( -a + 2\bigr] \) ${y}^2+\left(a+1\right){x}{y}={x}^{3}-a{x}^{2}+\left(-2a+5\right){x}-a+2$
192.6-l3 192.6-l \(\Q(\sqrt{57}) \) \( 2^{6} \cdot 3 \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $3.159278711$ $7.344689285$ 3.073434351 \( \frac{436639}{48} a + \frac{819427}{24} \) \( \bigl[a + 1\) , \( 1\) , \( a + 1\) , \( -1150 a - 3767\) , \( -43861 a - 143642\bigr] \) ${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+{x}^{2}+\left(-1150a-3767\right){x}-43861a-143642$
192.6-l4 192.6-l \(\Q(\sqrt{57}) \) \( 2^{6} \cdot 3 \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $1.579639355$ $3.672344642$ 3.073434351 \( \frac{24913903427}{36} a + \frac{4532864557}{2} \) \( \bigl[a + 1\) , \( 1\) , \( a + 1\) , \( -18355 a - 60112\) , \( -2678865 a - 8773062\bigr] \) ${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+{x}^{2}+\left(-18355a-60112\right){x}-2678865a-8773062$
192.6-m1 192.6-m \(\Q(\sqrt{57}) \) \( 2^{6} \cdot 3 \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.910646818$ $3.244334612$ 6.261208549 \( -\frac{1211377}{6561} a + \frac{818939}{729} \) \( \bigl[a + 1\) , \( a - 1\) , \( 0\) , \( 18 a - 38\) , \( -7 a + 77\bigr] \) ${y}^2+\left(a+1\right){x}{y}={x}^{3}+\left(a-1\right){x}^{2}+\left(18a-38\right){x}-7a+77$
192.6-m2 192.6-m \(\Q(\sqrt{57}) \) \( 2^{6} \cdot 3 \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1.821293637$ $6.488669225$ 6.261208549 \( -\frac{2972645}{81} a + \frac{13229111}{81} \) \( \bigl[a + 1\) , \( a - 1\) , \( 0\) , \( 13 a - 23\) , \( 24 a - 72\bigr] \) ${y}^2+\left(a+1\right){x}{y}={x}^{3}+\left(a-1\right){x}^{2}+\left(13a-23\right){x}+24a-72$
192.6-m3 192.6-m \(\Q(\sqrt{57}) \) \( 2^{6} \cdot 3 \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $3.642587275$ $6.488669225$ 6.261208549 \( -\frac{95313853375}{9} a + \frac{135819641159}{3} \) \( \bigl[a + 1\) , \( 1\) , \( 0\) , \( 25408 a - 108596\) , \( 4302021 a - 18390765\bigr] \) ${y}^2+\left(a+1\right){x}{y}={x}^{3}+{x}^{2}+\left(25408a-108596\right){x}+4302021a-18390765$
192.6-m4 192.6-m \(\Q(\sqrt{57}) \) \( 2^{6} \cdot 3 \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $3.642587275$ $3.244334612$ 6.261208549 \( \frac{38140243}{9} a + \frac{41635117}{3} \) \( \bigl[a + 1\) , \( -a\) , \( a + 1\) , \( -827 a - 2704\) , \( -25794 a - 84471\bigr] \) ${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}-a{x}^{2}+\left(-827a-2704\right){x}-25794a-84471$
192.6-n1 192.6-n \(\Q(\sqrt{57}) \) \( 2^{6} \cdot 3 \) $1$ $\mathsf{trivial}$ $\mathrm{SU}(2)$ $0.363472459$ $9.823775997$ 1.891788253 \( -\frac{3544576}{81} a - \frac{34825216}{243} \) \( \bigl[0\) , \( a\) , \( a + 1\) , \( 164 a - 695\) , \( 56715 a - 242456\bigr] \) ${y}^2+\left(a+1\right){y}={x}^{3}+a{x}^{2}+\left(164a-695\right){x}+56715a-242456$
192.6-o1 192.6-o \(\Q(\sqrt{57}) \) \( 2^{6} \cdot 3 \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $6.006209150$ 1.591083672 \( -\frac{864199}{27} a + \frac{3692909}{27} \) \( \bigl[a + 1\) , \( -1\) , \( 0\) , \( 32 a - 125\) , \( 181 a - 766\bigr] \) ${y}^2+\left(a+1\right){x}{y}={x}^{3}-{x}^{2}+\left(32a-125\right){x}+181a-766$
192.6-o2 192.6-o \(\Q(\sqrt{57}) \) \( 2^{6} \cdot 3 \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $6.006209150$ 1.591083672 \( \frac{7009331}{243} a + \frac{7792021}{81} \) \( \bigl[a + 1\) , \( -1\) , \( 0\) , \( 47 a - 190\) , \( -12 a + 57\bigr] \) ${y}^2+\left(a+1\right){x}{y}={x}^{3}-{x}^{2}+\left(47a-190\right){x}-12a+57$
192.6-p1 192.6-p \(\Q(\sqrt{57}) \) \( 2^{6} \cdot 3 \) 0 $\mathsf{trivial}$ $\mathrm{SU}(2)$ $1$ $3.635986035$ 1.926392461 \( -\frac{19456}{9} a - \frac{63488}{9} \) \( \bigl[0\) , \( a - 1\) , \( a + 1\) , \( -a + 7\) , \( 4 a - 24\bigr] \) ${y}^2+\left(a+1\right){y}={x}^{3}+\left(a-1\right){x}^{2}+\left(-a+7\right){x}+4a-24$
192.6-q1 192.6-q \(\Q(\sqrt{57}) \) \( 2^{6} \cdot 3 \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $5.031519389$ $8.424922693$ 5.614714104 \( -\frac{682795351}{3} a + \frac{2918892701}{3} \) \( \bigl[a + 1\) , \( 1\) , \( 0\) , \( 284 a - 1193\) , \( 5211 a - 22258\bigr] \) ${y}^2+\left(a+1\right){x}{y}={x}^{3}+{x}^{2}+\left(284a-1193\right){x}+5211a-22258$
192.6-q2 192.6-q \(\Q(\sqrt{57}) \) \( 2^{6} \cdot 3 \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.628939923$ $8.424922693$ 5.614714104 \( -\frac{30245593}{81} a + \frac{43142695}{27} \) \( \bigl[a + 1\) , \( -a\) , \( a + 1\) , \( 10711 a + 35082\) , \( 322238 a + 1055305\bigr] \) ${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}-a{x}^{2}+\left(10711a+35082\right){x}+322238a+1055305$
192.6-q3 192.6-q \(\Q(\sqrt{57}) \) \( 2^{6} \cdot 3 \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1.257879847$ $16.84984538$ 5.614714104 \( -\frac{833}{9} a + \frac{20207}{9} \) \( \bigl[a + 1\) , \( -a\) , \( a + 1\) , \( -2784 a - 9113\) , \( 37294 a + 122137\bigr] \) ${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}-a{x}^{2}+\left(-2784a-9113\right){x}+37294a+122137$
192.6-q4 192.6-q \(\Q(\sqrt{57}) \) \( 2^{6} \cdot 3 \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $2.515759694$ $8.424922693$ 5.614714104 \( \frac{49147}{3} a + 54795 \) \( \bigl[a + 1\) , \( a - 1\) , \( 0\) , \( -757 a + 3271\) , \( -15104 a + 64608\bigr] \) ${y}^2+\left(a+1\right){x}{y}={x}^{3}+\left(a-1\right){x}^{2}+\left(-757a+3271\right){x}-15104a+64608$
192.6-q5 192.6-q \(\Q(\sqrt{57}) \) \( 2^{6} \cdot 3 \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $2.515759694$ $16.84984538$ 5.614714104 \( \frac{263081}{3} a + 329391 \) \( \bigl[a + 1\) , \( a - 1\) , \( 0\) , \( -8 a - 24\) , \( 9 a + 29\bigr] \) ${y}^2+\left(a+1\right){x}{y}={x}^{3}+\left(a-1\right){x}^{2}+\left(-8a-24\right){x}+9a+29$
192.6-q6 192.6-q \(\Q(\sqrt{57}) \) \( 2^{6} \cdot 3 \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $5.031519389$ $8.424922693$ 5.614714104 \( \frac{196674895963}{3} a + \frac{644094003067}{3} \) \( \bigl[a + 1\) , \( a - 1\) , \( 0\) , \( -193 a - 629\) , \( 2262 a + 7406\bigr] \) ${y}^2+\left(a+1\right){x}{y}={x}^{3}+\left(a-1\right){x}^{2}+\left(-193a-629\right){x}+2262a+7406$
192.6-r1 192.6-r \(\Q(\sqrt{57}) \) \( 2^{6} \cdot 3 \) 0 $\mathsf{trivial}$ $\mathrm{SU}(2)$ $1$ $10.28869632$ 2.725542240 \( \frac{512}{3} a + \frac{1024}{3} \) \( \bigl[0\) , \( a\) , \( a + 1\) , \( 4 a - 11\) , \( 18 a - 81\bigr] \) ${y}^2+\left(a+1\right){y}={x}^{3}+a{x}^{2}+\left(4a-11\right){x}+18a-81$
192.6-s1 192.6-s \(\Q(\sqrt{57}) \) \( 2^{6} \cdot 3 \) 0 $\mathsf{trivial}$ $\mathrm{SU}(2)$ $1$ $1.218492441$ 0.322786533 \( -\frac{62998269440}{3} a - 68771386368 \) \( \bigl[0\) , \( -1\) , \( a + 1\) , \( -25 a - 84\) , \( -127 a - 418\bigr] \) ${y}^2+\left(a+1\right){y}={x}^{3}-{x}^{2}+\left(-25a-84\right){x}-127a-418$
Next   displayed columns for results

  *The rank, regulator and analytic order of Ш are not known for all curves in the database; curves for which these are unknown will not appear in searches specifying one of these quantities.