Label |
Class |
Class size |
Class degree |
Base field |
Field degree |
Field signature |
Conductor |
Conductor norm |
Discriminant norm |
Root analytic conductor |
Bad primes |
Rank |
Torsion |
CM |
CM |
Sato-Tate |
$\Q$-curve |
Base change |
Semistable |
Potentially good |
Nonmax $\ell$ |
mod-$\ell$ images |
$Ш_{\textrm{an}}$ |
Tamagawa |
Regulator |
Period |
Leading coeff |
j-invariant |
Weierstrass coefficients |
Weierstrass equation |
192.6-a1 |
192.6-a |
$1$ |
$1$ |
\(\Q(\sqrt{57}) \) |
$2$ |
$[2, 0]$ |
192.6 |
\( 2^{6} \cdot 3 \) |
\( 2^{14} \cdot 3^{4} \) |
$2.51132$ |
$(a+3), (4a+13)$ |
$1$ |
$\mathsf{trivial}$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
|
$1$ |
\( 2 \) |
$0.307981421$ |
$17.75724302$ |
2.897494500 |
\( -\frac{19456}{9} a - \frac{63488}{9} \) |
\( \bigl[0\) , \( a\) , \( a + 1\) , \( -10267 a - 33620\) , \( 1142517 a + 3741646\bigr] \) |
${y}^2+\left(a+1\right){y}={x}^{3}+a{x}^{2}+\left(-10267a-33620\right){x}+1142517a+3741646$ |
192.6-b1 |
192.6-b |
$6$ |
$8$ |
\(\Q(\sqrt{57}) \) |
$2$ |
$[2, 0]$ |
192.6 |
\( 2^{6} \cdot 3 \) |
\( - 2^{10} \cdot 3 \) |
$2.51132$ |
$(a+3), (4a+13)$ |
0 |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2B |
$1$ |
\( 2 \) |
$1$ |
$13.30619092$ |
0.881224021 |
\( -\frac{682795351}{3} a + \frac{2918892701}{3} \) |
\( \bigl[a + 1\) , \( -a + 1\) , \( a + 1\) , \( -290 a - 942\) , \( -13768 a - 45084\bigr] \) |
${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(-290a-942\right){x}-13768a-45084$ |
192.6-b2 |
192.6-b |
$6$ |
$8$ |
\(\Q(\sqrt{57}) \) |
$2$ |
$[2, 0]$ |
192.6 |
\( 2^{6} \cdot 3 \) |
\( - 2^{17} \cdot 3^{8} \) |
$2.51132$ |
$(a+3), (4a+13)$ |
0 |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2B |
$1$ |
\( 2^{3} \) |
$1$ |
$3.326547732$ |
0.881224021 |
\( -\frac{30245593}{81} a + \frac{43142695}{27} \) |
\( \bigl[a + 1\) , \( -a + 1\) , \( a + 1\) , \( 100 a - 436\) , \( 1280 a - 5476\bigr] \) |
${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(100a-436\right){x}+1280a-5476$ |
192.6-b3 |
192.6-b |
$6$ |
$8$ |
\(\Q(\sqrt{57}) \) |
$2$ |
$[2, 0]$ |
192.6 |
\( 2^{6} \cdot 3 \) |
\( 2^{16} \cdot 3^{4} \) |
$2.51132$ |
$(a+3), (4a+13)$ |
0 |
$\Z/2\Z\oplus\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2Cs |
$1$ |
\( 2^{3} \) |
$1$ |
$13.30619092$ |
0.881224021 |
\( -\frac{833}{9} a + \frac{20207}{9} \) |
\( \bigl[a + 1\) , \( -a + 1\) , \( a + 1\) , \( 5 a - 31\) , \( 24 a - 108\bigr] \) |
${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(5a-31\right){x}+24a-108$ |
192.6-b4 |
192.6-b |
$6$ |
$8$ |
\(\Q(\sqrt{57}) \) |
$2$ |
$[2, 0]$ |
192.6 |
\( 2^{6} \cdot 3 \) |
\( - 2^{17} \cdot 3^{2} \) |
$2.51132$ |
$(a+3), (4a+13)$ |
0 |
$\Z/4\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2B |
$1$ |
\( 2^{3} \) |
$1$ |
$13.30619092$ |
0.881224021 |
\( \frac{49147}{3} a + 54795 \) |
\( \bigl[a + 1\) , \( a\) , \( 0\) , \( -45 a - 146\) , \( 194 a + 635\bigr] \) |
${y}^2+\left(a+1\right){x}{y}={x}^{3}+a{x}^{2}+\left(-45a-146\right){x}+194a+635$ |
192.6-b5 |
192.6-b |
$6$ |
$8$ |
\(\Q(\sqrt{57}) \) |
$2$ |
$[2, 0]$ |
192.6 |
\( 2^{6} \cdot 3 \) |
\( 2^{14} \cdot 3^{2} \) |
$2.51132$ |
$(a+3), (4a+13)$ |
0 |
$\Z/2\Z\oplus\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2Cs |
$1$ |
\( 2^{3} \) |
$1$ |
$13.30619092$ |
0.881224021 |
\( \frac{263081}{3} a + 329391 \) |
\( \bigl[a + 1\) , \( -1\) , \( a + 1\) , \( 9217 a - 39404\) , \( -915567 a + 3913974\bigr] \) |
${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}-{x}^{2}+\left(9217a-39404\right){x}-915567a+3913974$ |
192.6-b6 |
192.6-b |
$6$ |
$8$ |
\(\Q(\sqrt{57}) \) |
$2$ |
$[2, 0]$ |
192.6 |
\( 2^{6} \cdot 3 \) |
\( - 2^{16} \cdot 3 \) |
$2.51132$ |
$(a+3), (4a+13)$ |
0 |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2B |
$4$ |
\( 2 \) |
$1$ |
$3.326547732$ |
0.881224021 |
\( \frac{196674895963}{3} a + \frac{644094003067}{3} \) |
\( \bigl[a + 1\) , \( -1\) , \( a + 1\) , \( -1168 a + 4991\) , \( -2865485 a + 12249712\bigr] \) |
${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}-{x}^{2}+\left(-1168a+4991\right){x}-2865485a+12249712$ |
192.6-c1 |
192.6-c |
$2$ |
$2$ |
\(\Q(\sqrt{57}) \) |
$2$ |
$[2, 0]$ |
192.6 |
\( 2^{6} \cdot 3 \) |
\( - 2^{10} \cdot 3^{5} \) |
$2.51132$ |
$(a+3), (4a+13)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2B |
$1$ |
\( 2 \cdot 5 \) |
$0.200860895$ |
$23.18112979$ |
3.083632177 |
\( -\frac{864199}{27} a + \frac{3692909}{27} \) |
\( \bigl[a + 1\) , \( a - 1\) , \( a + 1\) , \( -336 a - 1100\) , \( 36572 a + 119768\bigr] \) |
${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+\left(a-1\right){x}^{2}+\left(-336a-1100\right){x}+36572a+119768$ |
192.6-c2 |
192.6-c |
$2$ |
$2$ |
\(\Q(\sqrt{57}) \) |
$2$ |
$[2, 0]$ |
192.6 |
\( 2^{6} \cdot 3 \) |
\( 2^{14} \cdot 3^{10} \) |
$2.51132$ |
$(a+3), (4a+13)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2B |
$1$ |
\( 2^{3} \cdot 5 \) |
$0.100430447$ |
$11.59056489$ |
3.083632177 |
\( \frac{7009331}{243} a + \frac{7792021}{81} \) |
\( \bigl[a + 1\) , \( a - 1\) , \( a + 1\) , \( -10921 a - 35765\) , \( 1165450 a + 3816750\bigr] \) |
${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+\left(a-1\right){x}^{2}+\left(-10921a-35765\right){x}+1165450a+3816750$ |
192.6-d1 |
192.6-d |
$4$ |
$4$ |
\(\Q(\sqrt{57}) \) |
$2$ |
$[2, 0]$ |
192.6 |
\( 2^{6} \cdot 3 \) |
\( - 2^{20} \cdot 3 \) |
$2.51132$ |
$(a+3), (4a+13)$ |
0 |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2B |
$1$ |
\( 2 \) |
$1$ |
$17.01627867$ |
1.126930584 |
\( -\frac{20041777}{12} a + \frac{42838465}{6} \) |
\( \bigl[a + 1\) , \( -1\) , \( 0\) , \( 2 a + 1\) , \( 9 a + 34\bigr] \) |
${y}^2+\left(a+1\right){x}{y}={x}^{3}-{x}^{2}+\left(2a+1\right){x}+9a+34$ |
192.6-d2 |
192.6-d |
$4$ |
$4$ |
\(\Q(\sqrt{57}) \) |
$2$ |
$[2, 0]$ |
192.6 |
\( 2^{6} \cdot 3 \) |
\( - 2^{26} \cdot 3 \) |
$2.51132$ |
$(a+3), (4a+13)$ |
0 |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2B |
$1$ |
\( 2^{2} \) |
$1$ |
$8.508139335$ |
1.126930584 |
\( \frac{152551}{768} a + \frac{476915}{384} \) |
\( \bigl[a + 1\) , \( -1\) , \( 0\) , \( -71829 a - 235234\) , \( -8626826 a - 28252141\bigr] \) |
${y}^2+\left(a+1\right){x}{y}={x}^{3}-{x}^{2}+\left(-71829a-235234\right){x}-8626826a-28252141$ |
192.6-d3 |
192.6-d |
$4$ |
$4$ |
\(\Q(\sqrt{57}) \) |
$2$ |
$[2, 0]$ |
192.6 |
\( 2^{6} \cdot 3 \) |
\( 2^{22} \cdot 3^{2} \) |
$2.51132$ |
$(a+3), (4a+13)$ |
0 |
$\Z/2\Z\oplus\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2Cs |
$1$ |
\( 2^{3} \) |
$1$ |
$17.01627867$ |
1.126930584 |
\( \frac{436639}{48} a + \frac{819427}{24} \) |
\( \bigl[a + 1\) , \( a\) , \( a + 1\) , \( 142 a - 579\) , \( -1418 a + 6107\bigr] \) |
${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+a{x}^{2}+\left(142a-579\right){x}-1418a+6107$ |
192.6-d4 |
192.6-d |
$4$ |
$4$ |
\(\Q(\sqrt{57}) \) |
$2$ |
$[2, 0]$ |
192.6 |
\( 2^{6} \cdot 3 \) |
\( 2^{20} \cdot 3^{4} \) |
$2.51132$ |
$(a+3), (4a+13)$ |
0 |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2B |
$1$ |
\( 2^{2} \) |
$1$ |
$8.508139335$ |
1.126930584 |
\( \frac{24913903427}{36} a + \frac{4532864557}{2} \) |
\( \bigl[a + 1\) , \( a\) , \( a + 1\) , \( 737 a - 3124\) , \( 19386 a - 82833\bigr] \) |
${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+a{x}^{2}+\left(737a-3124\right){x}+19386a-82833$ |
192.6-e1 |
192.6-e |
$1$ |
$1$ |
\(\Q(\sqrt{57}) \) |
$2$ |
$[2, 0]$ |
192.6 |
\( 2^{6} \cdot 3 \) |
\( 2^{6} \cdot 3^{2} \) |
$2.51132$ |
$(a+3), (4a+13)$ |
$1$ |
$\mathsf{trivial}$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
|
$1$ |
\( 2 \) |
$0.167246666$ |
$25.84169008$ |
2.289817913 |
\( \frac{512}{3} a + \frac{1024}{3} \) |
\( \bigl[0\) , \( 1\) , \( a + 1\) , \( 97 a + 318\) , \( 823 a + 2694\bigr] \) |
${y}^2+\left(a+1\right){y}={x}^{3}+{x}^{2}+\left(97a+318\right){x}+823a+2694$ |
192.6-f1 |
192.6-f |
$2$ |
$2$ |
\(\Q(\sqrt{57}) \) |
$2$ |
$[2, 0]$ |
192.6 |
\( 2^{6} \cdot 3 \) |
\( - 2^{12} \cdot 3 \) |
$2.51132$ |
$(a+3), (4a+13)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2B |
$1$ |
\( 2 \) |
$1.097791926$ |
$21.05953938$ |
3.062185337 |
\( -\frac{511}{3} a + \frac{4373}{3} \) |
\( \bigl[a + 1\) , \( a\) , \( a + 1\) , \( 1456 a + 4767\) , \( 73908 a + 242041\bigr] \) |
${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+a{x}^{2}+\left(1456a+4767\right){x}+73908a+242041$ |
192.6-f2 |
192.6-f |
$2$ |
$2$ |
\(\Q(\sqrt{57}) \) |
$2$ |
$[2, 0]$ |
192.6 |
\( 2^{6} \cdot 3 \) |
\( 2^{6} \cdot 3^{2} \) |
$2.51132$ |
$(a+3), (4a+13)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2B |
$1$ |
\( 2 \) |
$0.548895963$ |
$42.11907876$ |
3.062185337 |
\( -150535 a + \frac{1941703}{3} \) |
\( \bigl[a + 1\) , \( -a + 1\) , \( 0\) , \( -4 a - 3\) , \( 6\bigr] \) |
${y}^2+\left(a+1\right){x}{y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(-4a-3\right){x}+6$ |
192.6-g1 |
192.6-g |
$4$ |
$4$ |
\(\Q(\sqrt{57}) \) |
$2$ |
$[2, 0]$ |
192.6 |
\( 2^{6} \cdot 3 \) |
\( 2^{15} \cdot 3 \) |
$2.51132$ |
$(a+3), (4a+13)$ |
0 |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2B |
$1$ |
\( 2^{2} \) |
$1$ |
$13.86747782$ |
1.836792309 |
\( \frac{625}{3} a + \frac{2125}{3} \) |
\( \bigl[a + 1\) , \( -a + 1\) , \( 0\) , \( 6 a + 30\) , \( 13 a + 49\bigr] \) |
${y}^2+\left(a+1\right){x}{y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(6a+30\right){x}+13a+49$ |
192.6-g2 |
192.6-g |
$4$ |
$4$ |
\(\Q(\sqrt{57}) \) |
$2$ |
$[2, 0]$ |
192.6 |
\( 2^{6} \cdot 3 \) |
\( 2^{12} \cdot 3^{2} \) |
$2.51132$ |
$(a+3), (4a+13)$ |
0 |
$\Z/2\Z\oplus\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2Cs |
$1$ |
\( 2^{3} \) |
$1$ |
$27.73495565$ |
1.836792309 |
\( -\frac{7375}{3} a + 12375 \) |
\( \bigl[a + 1\) , \( -1\) , \( 0\) , \( 10 a - 31\) , \( -23 a + 106\bigr] \) |
${y}^2+\left(a+1\right){x}{y}={x}^{3}-{x}^{2}+\left(10a-31\right){x}-23a+106$ |
192.6-g3 |
192.6-g |
$4$ |
$4$ |
\(\Q(\sqrt{57}) \) |
$2$ |
$[2, 0]$ |
192.6 |
\( 2^{6} \cdot 3 \) |
\( 2^{15} \cdot 3 \) |
$2.51132$ |
$(a+3), (4a+13)$ |
0 |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2B |
$1$ |
\( 2^{2} \) |
$1$ |
$13.86747782$ |
1.836792309 |
\( -\frac{153722875}{3} a + \frac{657508625}{3} \) |
\( \bigl[a + 1\) , \( -1\) , \( 0\) , \( 135 a - 566\) , \( -1618 a + 6923\bigr] \) |
${y}^2+\left(a+1\right){x}{y}={x}^{3}-{x}^{2}+\left(135a-566\right){x}-1618a+6923$ |
192.6-g4 |
192.6-g |
$4$ |
$4$ |
\(\Q(\sqrt{57}) \) |
$2$ |
$[2, 0]$ |
192.6 |
\( 2^{6} \cdot 3 \) |
\( 2^{6} \cdot 3^{4} \) |
$2.51132$ |
$(a+3), (4a+13)$ |
0 |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2B |
$1$ |
\( 2 \) |
$1$ |
$27.73495565$ |
1.836792309 |
\( \frac{885625}{9} a + \frac{2934125}{9} \) |
\( \bigl[a + 1\) , \( a\) , \( a + 1\) , \( 4129 a - 17623\) , \( 203103 a - 868203\bigr] \) |
${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+a{x}^{2}+\left(4129a-17623\right){x}+203103a-868203$ |
192.6-h1 |
192.6-h |
$1$ |
$1$ |
\(\Q(\sqrt{57}) \) |
$2$ |
$[2, 0]$ |
192.6 |
\( 2^{6} \cdot 3 \) |
\( 2^{6} \cdot 3^{10} \) |
$2.51132$ |
$(a+3), (4a+13)$ |
0 |
$\mathsf{trivial}$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
|
$1$ |
\( 2 \cdot 5 \) |
$1$ |
$4.397124811$ |
5.824134090 |
\( -\frac{3544576}{81} a - \frac{34825216}{243} \) |
\( \bigl[0\) , \( 1\) , \( a + 1\) , \( -63 a - 206\) , \( -552 a - 1809\bigr] \) |
${y}^2+\left(a+1\right){y}={x}^{3}+{x}^{2}+\left(-63a-206\right){x}-552a-1809$ |
192.6-i1 |
192.6-i |
$4$ |
$4$ |
\(\Q(\sqrt{57}) \) |
$2$ |
$[2, 0]$ |
192.6 |
\( 2^{6} \cdot 3 \) |
\( - 2^{10} \cdot 3^{3} \) |
$2.51132$ |
$(a+3), (4a+13)$ |
$2$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2B |
$1$ |
\( 2 \cdot 3 \) |
$0.249045257$ |
$17.95446427$ |
3.553567344 |
\( -\frac{39781}{9} a + \frac{162551}{9} \) |
\( \bigl[a + 1\) , \( a - 1\) , \( a + 1\) , \( 3270 a - 13958\) , \( 188954 a - 807730\bigr] \) |
${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+\left(a-1\right){x}^{2}+\left(3270a-13958\right){x}+188954a-807730$ |
192.6-i2 |
192.6-i |
$4$ |
$4$ |
\(\Q(\sqrt{57}) \) |
$2$ |
$[2, 0]$ |
192.6 |
\( 2^{6} \cdot 3 \) |
\( 2^{16} \cdot 3^{12} \) |
$2.51132$ |
$(a+3), (4a+13)$ |
$2$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2B |
$1$ |
\( 2^{4} \cdot 3 \) |
$0.062261314$ |
$8.977232136$ |
3.553567344 |
\( -\frac{398173643}{729} a + \frac{1703867237}{729} \) |
\( \bigl[a + 1\) , \( a - 1\) , \( a + 1\) , \( 112030 a - 478898\) , \( -39758424 a + 169964004\bigr] \) |
${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+\left(a-1\right){x}^{2}+\left(112030a-478898\right){x}-39758424a+169964004$ |
192.6-i3 |
192.6-i |
$4$ |
$4$ |
\(\Q(\sqrt{57}) \) |
$2$ |
$[2, 0]$ |
192.6 |
\( 2^{6} \cdot 3 \) |
\( 2^{14} \cdot 3^{6} \) |
$2.51132$ |
$(a+3), (4a+13)$ |
$2$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2Cs |
$1$ |
\( 2^{3} \cdot 3 \) |
$0.249045257$ |
$17.95446427$ |
3.553567344 |
\( \frac{7540169}{27} a + \frac{8257039}{9} \) |
\( \bigl[a + 1\) , \( a - 1\) , \( a + 1\) , \( 7835 a - 33473\) , \( -471092 a + 2013912\bigr] \) |
${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+\left(a-1\right){x}^{2}+\left(7835a-33473\right){x}-471092a+2013912$ |
192.6-i4 |
192.6-i |
$4$ |
$4$ |
\(\Q(\sqrt{57}) \) |
$2$ |
$[2, 0]$ |
192.6 |
\( 2^{6} \cdot 3 \) |
\( - 2^{16} \cdot 3^{3} \) |
$2.51132$ |
$(a+3), (4a+13)$ |
$2$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2B |
$1$ |
\( 2^{2} \cdot 3 \) |
$0.249045257$ |
$8.977232136$ |
3.553567344 |
\( \frac{5309980655707}{9} a + \frac{17389747083643}{9} \) |
\( \bigl[a + 1\) , \( a - 1\) , \( a + 1\) , \( -23320 a + 99712\) , \( -3208964 a + 13718088\bigr] \) |
${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+\left(a-1\right){x}^{2}+\left(-23320a+99712\right){x}-3208964a+13718088$ |
192.6-j1 |
192.6-j |
$4$ |
$4$ |
\(\Q(\sqrt{57}) \) |
$2$ |
$[2, 0]$ |
192.6 |
\( 2^{6} \cdot 3 \) |
\( 2^{15} \cdot 3 \) |
$2.51132$ |
$(a+3), (4a+13)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2B |
$1$ |
\( 2 \) |
$3.128105331$ |
$8.189771841$ |
3.393249107 |
\( \frac{625}{3} a + \frac{2125}{3} \) |
\( \bigl[a + 1\) , \( 1\) , \( a + 1\) , \( -163 a + 704\) , \( 17837 a - 76240\bigr] \) |
${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+{x}^{2}+\left(-163a+704\right){x}+17837a-76240$ |
192.6-j2 |
192.6-j |
$4$ |
$4$ |
\(\Q(\sqrt{57}) \) |
$2$ |
$[2, 0]$ |
192.6 |
\( 2^{6} \cdot 3 \) |
\( 2^{12} \cdot 3^{2} \) |
$2.51132$ |
$(a+3), (4a+13)$ |
$1$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2Cs |
$1$ |
\( 2^{3} \) |
$1.564052665$ |
$16.37954368$ |
3.393249107 |
\( -\frac{7375}{3} a + 12375 \) |
\( \bigl[a + 1\) , \( a - 1\) , \( a + 1\) , \( -918 a - 3006\) , \( -11166 a - 36570\bigr] \) |
${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+\left(a-1\right){x}^{2}+\left(-918a-3006\right){x}-11166a-36570$ |
192.6-j3 |
192.6-j |
$4$ |
$4$ |
\(\Q(\sqrt{57}) \) |
$2$ |
$[2, 0]$ |
192.6 |
\( 2^{6} \cdot 3 \) |
\( 2^{15} \cdot 3 \) |
$2.51132$ |
$(a+3), (4a+13)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2B |
$1$ |
\( 2 \) |
$3.128105331$ |
$8.189771841$ |
3.393249107 |
\( -\frac{153722875}{3} a + \frac{657508625}{3} \) |
\( \bigl[a + 1\) , \( a - 1\) , \( a + 1\) , \( -8593 a - 28141\) , \( 807364 a + 2644048\bigr] \) |
${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+\left(a-1\right){x}^{2}+\left(-8593a-28141\right){x}+807364a+2644048$ |
192.6-j4 |
192.6-j |
$4$ |
$4$ |
\(\Q(\sqrt{57}) \) |
$2$ |
$[2, 0]$ |
192.6 |
\( 2^{6} \cdot 3 \) |
\( 2^{6} \cdot 3^{4} \) |
$2.51132$ |
$(a+3), (4a+13)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2B |
$1$ |
\( 2^{2} \) |
$0.782026332$ |
$16.37954368$ |
3.393249107 |
\( \frac{885625}{9} a + \frac{2934125}{9} \) |
\( \bigl[a + 1\) , \( 1\) , \( a + 1\) , \( -3 a - 11\) , \( -18 a - 60\bigr] \) |
${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+{x}^{2}+\left(-3a-11\right){x}-18a-60$ |
192.6-k1 |
192.6-k |
$1$ |
$1$ |
\(\Q(\sqrt{57}) \) |
$2$ |
$[2, 0]$ |
192.6 |
\( 2^{6} \cdot 3 \) |
\( 2^{6} \cdot 3^{2} \) |
$2.51132$ |
$(a+3), (4a+13)$ |
$1$ |
$\mathsf{trivial}$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
|
$1$ |
\( 2 \) |
$0.522611832$ |
$30.54628654$ |
8.457854761 |
\( -\frac{62998269440}{3} a - 68771386368 \) |
\( \bigl[0\) , \( -a\) , \( a + 1\) , \( 29722 a - 127053\) , \( -5712610 a + 24420925\bigr] \) |
${y}^2+\left(a+1\right){y}={x}^{3}-a{x}^{2}+\left(29722a-127053\right){x}-5712610a+24420925$ |
192.6-l1 |
192.6-l |
$4$ |
$4$ |
\(\Q(\sqrt{57}) \) |
$2$ |
$[2, 0]$ |
192.6 |
\( 2^{6} \cdot 3 \) |
\( - 2^{20} \cdot 3 \) |
$2.51132$ |
$(a+3), (4a+13)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2B |
$1$ |
\( 2 \) |
$6.318557422$ |
$3.672344642$ |
3.073434351 |
\( -\frac{20041777}{12} a + \frac{42838465}{6} \) |
\( \bigl[a + 1\) , \( -a\) , \( 0\) , \( 67389 a - 288080\) , \( 18602828 a - 79525549\bigr] \) |
${y}^2+\left(a+1\right){x}{y}={x}^{3}-a{x}^{2}+\left(67389a-288080\right){x}+18602828a-79525549$ |
192.6-l2 |
192.6-l |
$4$ |
$4$ |
\(\Q(\sqrt{57}) \) |
$2$ |
$[2, 0]$ |
192.6 |
\( 2^{6} \cdot 3 \) |
\( - 2^{26} \cdot 3 \) |
$2.51132$ |
$(a+3), (4a+13)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2B |
$1$ |
\( 2^{2} \) |
$1.579639355$ |
$7.344689285$ |
3.073434351 |
\( \frac{152551}{768} a + \frac{476915}{384} \) |
\( \bigl[a + 1\) , \( -a\) , \( 0\) , \( -2 a + 5\) , \( -a + 2\bigr] \) |
${y}^2+\left(a+1\right){x}{y}={x}^{3}-a{x}^{2}+\left(-2a+5\right){x}-a+2$ |
192.6-l3 |
192.6-l |
$4$ |
$4$ |
\(\Q(\sqrt{57}) \) |
$2$ |
$[2, 0]$ |
192.6 |
\( 2^{6} \cdot 3 \) |
\( 2^{22} \cdot 3^{2} \) |
$2.51132$ |
$(a+3), (4a+13)$ |
$1$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2Cs |
$1$ |
\( 2^{3} \) |
$3.159278711$ |
$7.344689285$ |
3.073434351 |
\( \frac{436639}{48} a + \frac{819427}{24} \) |
\( \bigl[a + 1\) , \( 1\) , \( a + 1\) , \( -1150 a - 3767\) , \( -43861 a - 143642\bigr] \) |
${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+{x}^{2}+\left(-1150a-3767\right){x}-43861a-143642$ |
192.6-l4 |
192.6-l |
$4$ |
$4$ |
\(\Q(\sqrt{57}) \) |
$2$ |
$[2, 0]$ |
192.6 |
\( 2^{6} \cdot 3 \) |
\( 2^{20} \cdot 3^{4} \) |
$2.51132$ |
$(a+3), (4a+13)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2B |
$1$ |
\( 2^{3} \) |
$1.579639355$ |
$3.672344642$ |
3.073434351 |
\( \frac{24913903427}{36} a + \frac{4532864557}{2} \) |
\( \bigl[a + 1\) , \( 1\) , \( a + 1\) , \( -18355 a - 60112\) , \( -2678865 a - 8773062\bigr] \) |
${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+{x}^{2}+\left(-18355a-60112\right){x}-2678865a-8773062$ |
192.6-m1 |
192.6-m |
$4$ |
$4$ |
\(\Q(\sqrt{57}) \) |
$2$ |
$[2, 0]$ |
192.6 |
\( 2^{6} \cdot 3 \) |
\( - 2^{15} \cdot 3^{16} \) |
$2.51132$ |
$(a+3), (4a+13)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2B |
$1$ |
\( 2^{5} \) |
$0.910646818$ |
$3.244334612$ |
6.261208549 |
\( -\frac{1211377}{6561} a + \frac{818939}{729} \) |
\( \bigl[a + 1\) , \( a - 1\) , \( 0\) , \( 18 a - 38\) , \( -7 a + 77\bigr] \) |
${y}^2+\left(a+1\right){x}{y}={x}^{3}+\left(a-1\right){x}^{2}+\left(18a-38\right){x}-7a+77$ |
192.6-m2 |
192.6-m |
$4$ |
$4$ |
\(\Q(\sqrt{57}) \) |
$2$ |
$[2, 0]$ |
192.6 |
\( 2^{6} \cdot 3 \) |
\( 2^{12} \cdot 3^{8} \) |
$2.51132$ |
$(a+3), (4a+13)$ |
$1$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2Cs |
$1$ |
\( 2^{5} \) |
$1.821293637$ |
$6.488669225$ |
6.261208549 |
\( -\frac{2972645}{81} a + \frac{13229111}{81} \) |
\( \bigl[a + 1\) , \( a - 1\) , \( 0\) , \( 13 a - 23\) , \( 24 a - 72\bigr] \) |
${y}^2+\left(a+1\right){x}{y}={x}^{3}+\left(a-1\right){x}^{2}+\left(13a-23\right){x}+24a-72$ |
192.6-m3 |
192.6-m |
$4$ |
$4$ |
\(\Q(\sqrt{57}) \) |
$2$ |
$[2, 0]$ |
192.6 |
\( 2^{6} \cdot 3 \) |
\( 2^{6} \cdot 3^{4} \) |
$2.51132$ |
$(a+3), (4a+13)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2B |
$1$ |
\( 2^{2} \) |
$3.642587275$ |
$6.488669225$ |
6.261208549 |
\( -\frac{95313853375}{9} a + \frac{135819641159}{3} \) |
\( \bigl[a + 1\) , \( 1\) , \( 0\) , \( 25408 a - 108596\) , \( 4302021 a - 18390765\bigr] \) |
${y}^2+\left(a+1\right){x}{y}={x}^{3}+{x}^{2}+\left(25408a-108596\right){x}+4302021a-18390765$ |
192.6-m4 |
192.6-m |
$4$ |
$4$ |
\(\Q(\sqrt{57}) \) |
$2$ |
$[2, 0]$ |
192.6 |
\( 2^{6} \cdot 3 \) |
\( - 2^{15} \cdot 3^{4} \) |
$2.51132$ |
$(a+3), (4a+13)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2B |
$1$ |
\( 2^{3} \) |
$3.642587275$ |
$3.244334612$ |
6.261208549 |
\( \frac{38140243}{9} a + \frac{41635117}{3} \) |
\( \bigl[a + 1\) , \( -a\) , \( a + 1\) , \( -827 a - 2704\) , \( -25794 a - 84471\bigr] \) |
${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}-a{x}^{2}+\left(-827a-2704\right){x}-25794a-84471$ |
192.6-n1 |
192.6-n |
$1$ |
$1$ |
\(\Q(\sqrt{57}) \) |
$2$ |
$[2, 0]$ |
192.6 |
\( 2^{6} \cdot 3 \) |
\( 2^{6} \cdot 3^{10} \) |
$2.51132$ |
$(a+3), (4a+13)$ |
$1$ |
$\mathsf{trivial}$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
|
$1$ |
\( 2 \) |
$0.363472459$ |
$9.823775997$ |
1.891788253 |
\( -\frac{3544576}{81} a - \frac{34825216}{243} \) |
\( \bigl[0\) , \( a\) , \( a + 1\) , \( 164 a - 695\) , \( 56715 a - 242456\bigr] \) |
${y}^2+\left(a+1\right){y}={x}^{3}+a{x}^{2}+\left(164a-695\right){x}+56715a-242456$ |
192.6-o1 |
192.6-o |
$2$ |
$2$ |
\(\Q(\sqrt{57}) \) |
$2$ |
$[2, 0]$ |
192.6 |
\( 2^{6} \cdot 3 \) |
\( - 2^{10} \cdot 3^{5} \) |
$2.51132$ |
$(a+3), (4a+13)$ |
0 |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2B |
$4$ |
\( 2 \) |
$1$ |
$6.006209150$ |
1.591083672 |
\( -\frac{864199}{27} a + \frac{3692909}{27} \) |
\( \bigl[a + 1\) , \( -1\) , \( 0\) , \( 32 a - 125\) , \( 181 a - 766\bigr] \) |
${y}^2+\left(a+1\right){x}{y}={x}^{3}-{x}^{2}+\left(32a-125\right){x}+181a-766$ |
192.6-o2 |
192.6-o |
$2$ |
$2$ |
\(\Q(\sqrt{57}) \) |
$2$ |
$[2, 0]$ |
192.6 |
\( 2^{6} \cdot 3 \) |
\( 2^{14} \cdot 3^{10} \) |
$2.51132$ |
$(a+3), (4a+13)$ |
0 |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2B |
$1$ |
\( 2^{3} \) |
$1$ |
$6.006209150$ |
1.591083672 |
\( \frac{7009331}{243} a + \frac{7792021}{81} \) |
\( \bigl[a + 1\) , \( -1\) , \( 0\) , \( 47 a - 190\) , \( -12 a + 57\bigr] \) |
${y}^2+\left(a+1\right){x}{y}={x}^{3}-{x}^{2}+\left(47a-190\right){x}-12a+57$ |
192.6-p1 |
192.6-p |
$1$ |
$1$ |
\(\Q(\sqrt{57}) \) |
$2$ |
$[2, 0]$ |
192.6 |
\( 2^{6} \cdot 3 \) |
\( 2^{14} \cdot 3^{4} \) |
$2.51132$ |
$(a+3), (4a+13)$ |
0 |
$\mathsf{trivial}$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
|
$1$ |
\( 2^{2} \) |
$1$ |
$3.635986035$ |
1.926392461 |
\( -\frac{19456}{9} a - \frac{63488}{9} \) |
\( \bigl[0\) , \( a - 1\) , \( a + 1\) , \( -a + 7\) , \( 4 a - 24\bigr] \) |
${y}^2+\left(a+1\right){y}={x}^{3}+\left(a-1\right){x}^{2}+\left(-a+7\right){x}+4a-24$ |
192.6-q1 |
192.6-q |
$6$ |
$8$ |
\(\Q(\sqrt{57}) \) |
$2$ |
$[2, 0]$ |
192.6 |
\( 2^{6} \cdot 3 \) |
\( - 2^{10} \cdot 3 \) |
$2.51132$ |
$(a+3), (4a+13)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2B |
$1$ |
\( 2 \) |
$5.031519389$ |
$8.424922693$ |
5.614714104 |
\( -\frac{682795351}{3} a + \frac{2918892701}{3} \) |
\( \bigl[a + 1\) , \( 1\) , \( 0\) , \( 284 a - 1193\) , \( 5211 a - 22258\bigr] \) |
${y}^2+\left(a+1\right){x}{y}={x}^{3}+{x}^{2}+\left(284a-1193\right){x}+5211a-22258$ |
192.6-q2 |
192.6-q |
$6$ |
$8$ |
\(\Q(\sqrt{57}) \) |
$2$ |
$[2, 0]$ |
192.6 |
\( 2^{6} \cdot 3 \) |
\( - 2^{17} \cdot 3^{8} \) |
$2.51132$ |
$(a+3), (4a+13)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2B |
$1$ |
\( 2^{4} \) |
$0.628939923$ |
$8.424922693$ |
5.614714104 |
\( -\frac{30245593}{81} a + \frac{43142695}{27} \) |
\( \bigl[a + 1\) , \( -a\) , \( a + 1\) , \( 10711 a + 35082\) , \( 322238 a + 1055305\bigr] \) |
${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}-a{x}^{2}+\left(10711a+35082\right){x}+322238a+1055305$ |
192.6-q3 |
192.6-q |
$6$ |
$8$ |
\(\Q(\sqrt{57}) \) |
$2$ |
$[2, 0]$ |
192.6 |
\( 2^{6} \cdot 3 \) |
\( 2^{16} \cdot 3^{4} \) |
$2.51132$ |
$(a+3), (4a+13)$ |
$1$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2Cs |
$1$ |
\( 2^{4} \) |
$1.257879847$ |
$16.84984538$ |
5.614714104 |
\( -\frac{833}{9} a + \frac{20207}{9} \) |
\( \bigl[a + 1\) , \( -a\) , \( a + 1\) , \( -2784 a - 9113\) , \( 37294 a + 122137\bigr] \) |
${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}-a{x}^{2}+\left(-2784a-9113\right){x}+37294a+122137$ |
192.6-q4 |
192.6-q |
$6$ |
$8$ |
\(\Q(\sqrt{57}) \) |
$2$ |
$[2, 0]$ |
192.6 |
\( 2^{6} \cdot 3 \) |
\( - 2^{17} \cdot 3^{2} \) |
$2.51132$ |
$(a+3), (4a+13)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2B |
$1$ |
\( 2^{2} \) |
$2.515759694$ |
$8.424922693$ |
5.614714104 |
\( \frac{49147}{3} a + 54795 \) |
\( \bigl[a + 1\) , \( a - 1\) , \( 0\) , \( -757 a + 3271\) , \( -15104 a + 64608\bigr] \) |
${y}^2+\left(a+1\right){x}{y}={x}^{3}+\left(a-1\right){x}^{2}+\left(-757a+3271\right){x}-15104a+64608$ |
192.6-q5 |
192.6-q |
$6$ |
$8$ |
\(\Q(\sqrt{57}) \) |
$2$ |
$[2, 0]$ |
192.6 |
\( 2^{6} \cdot 3 \) |
\( 2^{14} \cdot 3^{2} \) |
$2.51132$ |
$(a+3), (4a+13)$ |
$1$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2Cs |
$1$ |
\( 2^{3} \) |
$2.515759694$ |
$16.84984538$ |
5.614714104 |
\( \frac{263081}{3} a + 329391 \) |
\( \bigl[a + 1\) , \( a - 1\) , \( 0\) , \( -8 a - 24\) , \( 9 a + 29\bigr] \) |
${y}^2+\left(a+1\right){x}{y}={x}^{3}+\left(a-1\right){x}^{2}+\left(-8a-24\right){x}+9a+29$ |
192.6-q6 |
192.6-q |
$6$ |
$8$ |
\(\Q(\sqrt{57}) \) |
$2$ |
$[2, 0]$ |
192.6 |
\( 2^{6} \cdot 3 \) |
\( - 2^{16} \cdot 3 \) |
$2.51132$ |
$(a+3), (4a+13)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2B |
$1$ |
\( 2 \) |
$5.031519389$ |
$8.424922693$ |
5.614714104 |
\( \frac{196674895963}{3} a + \frac{644094003067}{3} \) |
\( \bigl[a + 1\) , \( a - 1\) , \( 0\) , \( -193 a - 629\) , \( 2262 a + 7406\bigr] \) |
${y}^2+\left(a+1\right){x}{y}={x}^{3}+\left(a-1\right){x}^{2}+\left(-193a-629\right){x}+2262a+7406$ |
192.6-r1 |
192.6-r |
$1$ |
$1$ |
\(\Q(\sqrt{57}) \) |
$2$ |
$[2, 0]$ |
192.6 |
\( 2^{6} \cdot 3 \) |
\( 2^{6} \cdot 3^{2} \) |
$2.51132$ |
$(a+3), (4a+13)$ |
0 |
$\mathsf{trivial}$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
|
$1$ |
\( 2 \) |
$1$ |
$10.28869632$ |
2.725542240 |
\( \frac{512}{3} a + \frac{1024}{3} \) |
\( \bigl[0\) , \( a\) , \( a + 1\) , \( 4 a - 11\) , \( 18 a - 81\bigr] \) |
${y}^2+\left(a+1\right){y}={x}^{3}+a{x}^{2}+\left(4a-11\right){x}+18a-81$ |
192.6-s1 |
192.6-s |
$1$ |
$1$ |
\(\Q(\sqrt{57}) \) |
$2$ |
$[2, 0]$ |
192.6 |
\( 2^{6} \cdot 3 \) |
\( 2^{6} \cdot 3^{2} \) |
$2.51132$ |
$(a+3), (4a+13)$ |
0 |
$\mathsf{trivial}$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
|
$1$ |
\( 2 \) |
$1$ |
$1.218492441$ |
0.322786533 |
\( -\frac{62998269440}{3} a - 68771386368 \) |
\( \bigl[0\) , \( -1\) , \( a + 1\) , \( -25 a - 84\) , \( -127 a - 418\bigr] \) |
${y}^2+\left(a+1\right){y}={x}^{3}-{x}^{2}+\left(-25a-84\right){x}-127a-418$ |
*The rank, regulator and analytic order of Ш are
not known for all curves in the database; curves for which these are
unknown will not appear in searches specifying one of these
quantities.