Properties

Label 2.2.57.1-192.6-m2
Base field \(\Q(\sqrt{57}) \)
Conductor norm \( 192 \)
CM no
Base change no
Q-curve no
Torsion order \( 4 \)
Rank \( 1 \)

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Base field \(\Q(\sqrt{57}) \)

Generator \(a\), with minimal polynomial \( x^{2} - x - 14 \); class number \(1\).

Copy content comment:Define the base number field
 
Copy content sage:R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([-14, -1, 1]))
 
Copy content gp:K = nfinit(Polrev([-14, -1, 1]));
 
Copy content magma:R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-14, -1, 1]);
 

Weierstrass equation

\({y}^2+\left(a+1\right){x}{y}={x}^{3}+\left(a-1\right){x}^{2}+\left(13a-23\right){x}+24a-72\)
Copy content comment:Define the curve
 
Copy content sage:E = EllipticCurve([K([1,1]),K([-1,1]),K([0,0]),K([-23,13]),K([-72,24])])
 
Copy content gp:E = ellinit([Polrev([1,1]),Polrev([-1,1]),Polrev([0,0]),Polrev([-23,13]),Polrev([-72,24])], K);
 
Copy content magma:E := EllipticCurve([K![1,1],K![-1,1],K![0,0],K![-23,13],K![-72,24]]);
 

This is a global minimal model.

Copy content comment:Test whether it is a global minimal model
 
Copy content sage:E.is_global_minimal_model()
 

Mordell-Weil group structure

\(\Z \oplus \Z/{2}\Z \oplus \Z/{2}\Z\)

Mordell-Weil generators

$P$$\hat{h}(P)$Order
$\left(\frac{5}{4} a + \frac{1}{2} : -\frac{41}{8} a - \frac{85}{4} : 1\right)$$1.8212936376477382153604917344757261366$$\infty$
$\left(-2 a + 4 : 12 : 1\right)$$0$$2$
$\left(-4 : 2 a + 2 : 1\right)$$0$$2$

Invariants

Conductor: $\frak{N}$ = \((7a+19)\) = \((a+3)^{6}\cdot(4a+13)\)
Copy content comment:Compute the conductor
 
Copy content sage:E.conductor()
 
Copy content gp:ellglobalred(E)[1]
 
Copy content magma:Conductor(E);
 
Conductor norm: $N(\frak{N})$ = \( 192 \) = \(2^{6}\cdot3\)
Copy content comment:Compute the norm of the conductor
 
Copy content sage:E.conductor().norm()
 
Copy content gp:idealnorm(ellglobalred(E)[1])
 
Copy content magma:Norm(Conductor(E));
 
Discriminant: $\Delta$ = $8505a+28269$
Discriminant ideal: $\frak{D}_{\mathrm{min}} = (\Delta)$ = \((8505a+28269)\) = \((a+3)^{12}\cdot(4a+13)^{8}\)
Copy content comment:Compute the discriminant
 
Copy content sage:E.discriminant()
 
Copy content gp:E.disc
 
Copy content magma:Discriminant(E);
 
Discriminant norm: $N(\frak{D}_{\mathrm{min}}) = N(\Delta)$ = \( 26873856 \) = \(2^{12}\cdot3^{8}\)
Copy content comment:Compute the norm of the discriminant
 
Copy content sage:E.discriminant().norm()
 
Copy content gp:norm(E.disc)
 
Copy content magma:Norm(Discriminant(E));
 
j-invariant: $j$ = \( -\frac{2972645}{81} a + \frac{13229111}{81} \)
Copy content comment:Compute the j-invariant
 
Copy content sage:E.j_invariant()
 
Copy content gp:E.j
 
Copy content magma:jInvariant(E);
 
Endomorphism ring: $\mathrm{End}(E)$ = \(\Z\)   
Geometric endomorphism ring: $\mathrm{End}(E_{\overline{\Q}})$ = \(\Z\)    (no potential complex multiplication)
Copy content comment:Test for Complex Multiplication
 
Copy content sage:E.has_cm(), E.cm_discriminant()
 
Copy content magma:HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{ST}(E)$ = $\mathrm{SU}(2)$

BSD invariants

Analytic rank: $r_{\mathrm{an}}$= \( 1 \)
Copy content comment:Compute the Mordell-Weil rank
 
Copy content sage:E.rank()
 
Copy content magma:Rank(E);
 
Mordell-Weil rank: $r$ = \(1\)
Regulator: $\mathrm{Reg}(E/K)$ \( 1.8212936376477382153604917344757261366 \)
Néron-Tate Regulator: $\mathrm{Reg}_{\mathrm{NT}}(E/K)$ \( 3.6425872752954764307209834689514522732 \)
Global period: $\Omega(E/K)$ \( 6.4886692259428002113600866840106616326 \)
Tamagawa product: $\prod_{\frak{p}}c_{\frak{p}}$= \( 32 \)  =  \(2^{2}\cdot2^{3}\)
Torsion order: $\#E(K)_{\mathrm{tor}}$= \(4\)
Special value: $L^{(r)}(E/K,1)/r!$ \( 6.2612085493164811610194303690132766865 \)
Analytic order of Ш: Ш${}_{\mathrm{an}}$= \( 1 \) (rounded)

BSD formula

$$\begin{aligned}6.261208549 \approx L'(E/K,1) & \overset{?}{=} \frac{ \# ะจ(E/K) \cdot \Omega(E/K) \cdot \mathrm{Reg}_{\mathrm{NT}}(E/K) \cdot \prod_{\mathfrak{p}} c_{\mathfrak{p}} } { \#E(K)_{\mathrm{tor}}^2 \cdot \left|d_K\right|^{1/2} } \\ & \approx \frac{ 1 \cdot 6.488669 \cdot 3.642587 \cdot 32 } { {4^2 \cdot 7.549834} } \\ & \approx 6.261208549 \end{aligned}$$

Local data at primes of bad reduction

Copy content comment:Compute the local reduction data at primes of bad reduction
 
Copy content sage:E.local_data()
 
Copy content magma:LocalInformation(E);
 

This elliptic curve is not semistable. There are 2 primes $\frak{p}$ of bad reduction.

$\mathfrak{p}$ $N(\mathfrak{p})$ Tamagawa number Kodaira symbol Reduction type Root number \(\mathrm{ord}_{\mathfrak{p}}(\mathfrak{N}\)) \(\mathrm{ord}_{\mathfrak{p}}(\mathfrak{D}_{\mathrm{min}}\)) \(\mathrm{ord}_{\mathfrak{p}}(\mathrm{den}(j))\)
\((a+3)\) \(2\) \(4\) \(I_{2}^{*}\) Additive \(1\) \(6\) \(12\) \(0\)
\((4a+13)\) \(3\) \(8\) \(I_{8}\) Split multiplicative \(-1\) \(1\) \(8\) \(8\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2Cs

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2.
Its isogeny class 192.6-m consists of curves linked by isogenies of degrees dividing 4.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.