Base field \(\Q(\sqrt{57}) \)
Generator \(a\), with minimal polynomial \( x^{2} - x - 14 \); class number \(1\).
Weierstrass equation
This is a global minimal model.
Mordell-Weil group structure
\(\Z \oplus \Z/{2}\Z\)
Mordell-Weil generators
$P$ | $\hat{h}(P)$ | Order |
---|---|---|
$\left(\frac{45}{4} a + \frac{75}{2} : -\frac{1819}{8} a - \frac{2971}{4} : 1\right)$ | $1.0977919263313059414601192927111817327$ | $\infty$ |
$\left(-6 a - 19 : 15 a + 51 : 1\right)$ | $0$ | $2$ |
Invariants
Conductor: | $\frak{N}$ | = | \((7a+19)\) | = | \((a+3)^{6}\cdot(4a+13)\) |
| |||||
Conductor norm: | $N(\frak{N})$ | = | \( 192 \) | = | \(2^{6}\cdot3\) |
| |||||
Discriminant: | $\Delta$ | = | $-31a+53$ | ||
Discriminant ideal: | $\frak{D}_{\mathrm{min}} = (\Delta)$ | = | \((-31a+53)\) | = | \((a+3)^{12}\cdot(4a+13)\) |
| |||||
Discriminant norm: | $N(\frak{D}_{\mathrm{min}}) = N(\Delta)$ | = | \( -12288 \) | = | \(-2^{12}\cdot3\) |
| |||||
j-invariant: | $j$ | = | \( -\frac{511}{3} a + \frac{4373}{3} \) | ||
| |||||
Endomorphism ring: | $\mathrm{End}(E)$ | = | \(\Z\) | ||
Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) | ||
| |||||
Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ |
BSD invariants
Analytic rank: | $r_{\mathrm{an}}$ | = | \( 1 \) |
|
|||
Mordell-Weil rank: | $r$ | = | \(1\) |
Regulator: | $\mathrm{Reg}(E/K)$ | ≈ | \( 1.0977919263313059414601192927111817327 \) |
Néron-Tate Regulator: | $\mathrm{Reg}_{\mathrm{NT}}(E/K)$ | ≈ | \( 2.1955838526626118829202385854223634654 \) |
Global period: | $\Omega(E/K)$ | ≈ | \( 21.059539381410014119689580100994535086 \) |
Tamagawa product: | $\prod_{\frak{p}}c_{\frak{p}}$ | = | \( 2 \) = \(2\cdot1\) |
Torsion order: | $\#E(K)_{\mathrm{tor}}$ | = | \(2\) |
Special value: | $L^{(r)}(E/K,1)/r!$ | ≈ | \( 3.0621853370932912073475287356392866278 \) |
Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | = | \( 1 \) (rounded) |
BSD formula
$$\begin{aligned}3.062185337 \approx L'(E/K,1) & \overset{?}{=} \frac{ \# ะจ(E/K) \cdot \Omega(E/K) \cdot \mathrm{Reg}_{\mathrm{NT}}(E/K) \cdot \prod_{\mathfrak{p}} c_{\mathfrak{p}} } { \#E(K)_{\mathrm{tor}}^2 \cdot \left|d_K\right|^{1/2} } \\ & \approx \frac{ 1 \cdot 21.059539 \cdot 2.195584 \cdot 2 } { {2^2 \cdot 7.549834} } \\ & \approx 3.062185337 \end{aligned}$$
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 2 primes $\frak{p}$ of bad reduction.
$\mathfrak{p}$ | $N(\mathfrak{p})$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | \(\mathrm{ord}_{\mathfrak{p}}(\mathfrak{N}\)) | \(\mathrm{ord}_{\mathfrak{p}}(\mathfrak{D}_{\mathrm{min}}\)) | \(\mathrm{ord}_{\mathfrak{p}}(\mathrm{den}(j))\) |
---|---|---|---|---|---|---|---|---|
\((a+3)\) | \(2\) | \(2\) | \(I_{2}^{*}\) | Additive | \(-1\) | \(6\) | \(12\) | \(0\) |
\((4a+13)\) | \(3\) | \(1\) | \(I_{1}\) | Non-split multiplicative | \(1\) | \(1\) | \(1\) | \(1\) |
Galois Representations
The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.
prime | Image of Galois Representation |
---|---|
\(2\) | 2B |
Isogenies and isogeny class
This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\)
2.
Its isogeny class
192.6-f
consists of curves linked by isogenies of
degree 2.
Base change
This elliptic curve is not a \(\Q\)-curve.
It is not the base change of an elliptic curve defined over any subfield.