Properties

Label 2.2.56.1-32.1-d4
Base field \(\Q(\sqrt{14}) \)
Conductor norm \( 32 \)
CM yes (\(-16\))
Base change yes
Q-curve yes
Torsion order \( 4 \)
Rank \( 1 \)

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Base field \(\Q(\sqrt{14}) \)

Generator \(a\), with minimal polynomial \( x^{2} - 14 \); class number \(1\).

Copy content comment:Define the base number field
 
Copy content sage:R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([-14, 0, 1]))
 
Copy content gp:K = nfinit(Polrev([-14, 0, 1]));
 
Copy content magma:R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-14, 0, 1]);
 

Weierstrass equation

\({y}^2+a{x}{y}+a{y}={x}^{3}+{x}^{2}+\left(-330a-1235\right){x}+5798a+21694\)
Copy content comment:Define the curve
 
Copy content sage:E = EllipticCurve([K([0,1]),K([1,0]),K([0,1]),K([-1235,-330]),K([21694,5798])])
 
Copy content gp:E = ellinit([Polrev([0,1]),Polrev([1,0]),Polrev([0,1]),Polrev([-1235,-330]),Polrev([21694,5798])], K);
 
Copy content magma:E := EllipticCurve([K![0,1],K![1,0],K![0,1],K![-1235,-330],K![21694,5798]]);
 

This is a global minimal model.

Copy content comment:Test whether it is a global minimal model
 
Copy content sage:E.is_global_minimal_model()
 

Mordell-Weil group structure

\(\Z \oplus \Z/{4}\Z\)

Mordell-Weil generators

$P$$\hat{h}(P)$Order
$\left(-\frac{3}{2} : -\frac{115}{4} a - \frac{217}{2} : 1\right)$$1.0670604245223770100258254009728323176$$\infty$
$\left(2 a + 6 : -19 a - 72 : 1\right)$$0$$4$

Invariants

Conductor: $\frak{N}$ = \((-4a+16)\) = \((-a+4)^{5}\)
Copy content comment:Compute the conductor
 
Copy content sage:E.conductor()
 
Copy content gp:ellglobalred(E)[1]
 
Copy content magma:Conductor(E);
 
Conductor norm: $N(\frak{N})$ = \( 32 \) = \(2^{5}\)
Copy content comment:Compute the norm of the conductor
 
Copy content sage:E.conductor().norm()
 
Copy content gp:idealnorm(K, ellglobalred(E)[1])
 
Copy content magma:Norm(Conductor(E));
 
Discriminant: $\Delta$ = $8$
Discriminant ideal: $\frak{D}_{\mathrm{min}} = (\Delta)$ = \((8)\) = \((-a+4)^{6}\)
Copy content comment:Compute the discriminant
 
Copy content sage:E.discriminant()
 
Copy content gp:E.disc
 
Copy content magma:Discriminant(E);
 
Discriminant norm: $N(\frak{D}_{\mathrm{min}}) = N(\Delta)$ = \( 64 \) = \(2^{6}\)
Copy content comment:Compute the norm of the discriminant
 
Copy content sage:E.discriminant().norm()
 
Copy content gp:norm(E.disc)
 
Copy content magma:Norm(Discriminant(E));
 
j-invariant: $j$ = \( 287496 \)
Copy content comment:Compute the j-invariant
 
Copy content sage:E.j_invariant()
 
Copy content gp:E.j
 
Copy content magma:jInvariant(E);
 
Endomorphism ring: $\mathrm{End}(E)$ = \(\Z\)   
Geometric endomorphism ring: $\mathrm{End}(E_{\overline{\Q}})$ = \(\Z[\sqrt{-4}]\)    (potential complex multiplication)
Copy content comment:Test for Complex Multiplication
 
Copy content sage:E.has_cm(), E.cm_discriminant()
 
Copy content magma:HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{ST}(E)$ = $N(\mathrm{U}(1))$

BSD invariants

Analytic rank: $r_{\mathrm{an}}$= \( 1 \)
Copy content comment:Compute the Mordell-Weil rank
 
Copy content sage:E.rank()
 
Copy content magma:Rank(E);
 
Mordell-Weil rank: $r$ = \(1\)
Regulator: $\mathrm{Reg}(E/K)$ \( 1.0670604245223770100258254009728323176 \)
Néron-Tate Regulator: $\mathrm{Reg}_{\mathrm{NT}}(E/K)$ \( 2.1341208490447540200516508019456646352 \)
Global period: $\Omega(E/K)$ \( 55.001486544162982619920766238484457583 \)
Tamagawa product: $\prod_{\frak{p}}c_{\frak{p}}$= \( 2 \)
Torsion order: $\#E(K)_{\mathrm{tor}}$= \(4\)
Special value: $L^{(r)}(E/K,1)/r!$ \( 1.9606922652991360744594237759870803188 \)
Analytic order of Ш: Ш${}_{\mathrm{an}}$= \( 1 \) (rounded)

BSD formula

$$\begin{aligned}1.960692265 \approx L'(E/K,1) & \overset{?}{=} \frac{ \# ะจ(E/K) \cdot \Omega(E/K) \cdot \mathrm{Reg}_{\mathrm{NT}}(E/K) \cdot \prod_{\mathfrak{p}} c_{\mathfrak{p}} } { \#E(K)_{\mathrm{tor}}^2 \cdot \left|d_K\right|^{1/2} } \\ & \approx \frac{ 1 \cdot 55.001487 \cdot 2.134121 \cdot 2 } { {4^2 \cdot 7.483315} } \\ & \approx 1.960692265 \end{aligned}$$

Local data at primes of bad reduction

Copy content comment:Compute the local reduction data at primes of bad reduction
 
Copy content sage:E.local_data()
 
Copy content magma:LocalInformation(E);
 

This elliptic curve is not semistable. There is only one prime $\frak{p}$ of bad reduction.

$\mathfrak{p}$ $N(\mathfrak{p})$ Tamagawa number Kodaira symbol Reduction type Root number \(\mathrm{ord}_{\mathfrak{p}}(\mathfrak{N}\)) \(\mathrm{ord}_{\mathfrak{p}}(\mathfrak{D}_{\mathrm{min}}\)) \(\mathrm{ord}_{\mathfrak{p}}(\mathrm{den}(j))\)
\((-a+4)\) \(2\) \(2\) \(III\) Additive \(-1\) \(5\) \(6\) \(0\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) .

The image is a Borel subgroup if \(p=2\), the normalizer of a split Cartan subgroup if \(\left(\frac{ -1 }{p}\right)=+1\) or the normalizer of a nonsplit Cartan subgroup if \(\left(\frac{ -1 }{p}\right)=-1\).

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2 and 4.
Its isogeny class 32.1-d consists of curves linked by isogenies of degrees dividing 4.

Base change

This elliptic curve is a \(\Q\)-curve. It is the base change of the following 2 elliptic curves:

Base field Curve
\(\Q\) 32.a2
\(\Q\) 3136.m2