Base field \(\Q(\sqrt{14}) \)
Generator \(a\), with minimal polynomial \( x^{2} - 14 \); class number \(1\).
Weierstrass equation
This is a global minimal model.
Mordell-Weil group structure
\(\Z \oplus \Z/{6}\Z\)
Mordell-Weil generators
| $P$ | $\hat{h}(P)$ | Order |
|---|---|---|
| $\left(\frac{2}{7} : -\frac{19}{49} a : 1\right)$ | $2.9811696947504565544838345024857085536$ | $\infty$ |
| $\left(7 : 21 : 1\right)$ | $0$ | $6$ |
Invariants
| Conductor: | $\frak{N}$ | = | \((-12a+42)\) | = | \((-a+4)^{2}\cdot(-2a+7)\cdot(3)\) |
|
| |||||
| Conductor norm: | $N(\frak{N})$ | = | \( 252 \) | = | \(2^{2}\cdot7\cdot9\) |
|
| |||||
| Discriminant: | $\Delta$ | = | $-21168$ | ||
| Discriminant ideal: | $\frak{D}_{\mathrm{min}} = (\Delta)$ | = | \((-21168)\) | = | \((-a+4)^{8}\cdot(-2a+7)^{4}\cdot(3)^{3}\) |
|
| |||||
| Discriminant norm: | $N(\frak{D}_{\mathrm{min}}) = N(\Delta)$ | = | \( 448084224 \) | = | \(2^{8}\cdot7^{4}\cdot9^{3}\) |
|
| |||||
| j-invariant: | $j$ | = | \( \frac{2048000}{1323} \) | ||
|
| |||||
| Endomorphism ring: | $\mathrm{End}(E)$ | = | \(\Z\) | ||
| Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) | ||
|
| |||||
| Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | ||
BSD invariants
| Analytic rank: | $r_{\mathrm{an}}$ | = | \( 1 \) |
|
|
|||
| Mordell-Weil rank: | $r$ | = | \(1\) |
| Regulator: | $\mathrm{Reg}(E/K)$ | ≈ | \( 2.9811696947504565544838345024857085536 \) |
| Néron-Tate Regulator: | $\mathrm{Reg}_{\mathrm{NT}}(E/K)$ | ≈ | \( 5.9623393895009131089676690049714171072 \) |
| Global period: | $\Omega(E/K)$ | ≈ | \( 4.7974890387035532392272979808542832181 \) |
| Tamagawa product: | $\prod_{\frak{p}}c_{\frak{p}}$ | = | \( 36 \) = \(3\cdot2^{2}\cdot3\) |
| Torsion order: | $\#E(K)_{\mathrm{tor}}$ | = | \(6\) |
| Special value: | $L^{(r)}(E/K,1)/r!$ | ≈ | \( 3.8224047406467204102854146571293412855 \) |
| Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | = | \( 1 \) (rounded) |
BSD formula
$$\begin{aligned}3.822404741 \approx L'(E/K,1) & \overset{?}{=} \frac{ \# ะจ(E/K) \cdot \Omega(E/K) \cdot \mathrm{Reg}_{\mathrm{NT}}(E/K) \cdot \prod_{\mathfrak{p}} c_{\mathfrak{p}} } { \#E(K)_{\mathrm{tor}}^2 \cdot \left|d_K\right|^{1/2} } \\ & \approx \frac{ 1 \cdot 4.797489 \cdot 5.962339 \cdot 36 } { {6^2 \cdot 7.483315} } \\ & \approx 3.822404741 \end{aligned}$$
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 3 primes $\frak{p}$ of bad reduction.
| $\mathfrak{p}$ | $N(\mathfrak{p})$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | \(\mathrm{ord}_{\mathfrak{p}}(\mathfrak{N}\)) | \(\mathrm{ord}_{\mathfrak{p}}(\mathfrak{D}_{\mathrm{min}}\)) | \(\mathrm{ord}_{\mathfrak{p}}(\mathrm{den}(j))\) |
|---|---|---|---|---|---|---|---|---|
| \((-a+4)\) | \(2\) | \(3\) | \(IV^{*}\) | Additive | \(-1\) | \(2\) | \(8\) | \(0\) |
| \((-2a+7)\) | \(7\) | \(4\) | \(I_{4}\) | Split multiplicative | \(-1\) | \(1\) | \(4\) | \(4\) |
| \((3)\) | \(9\) | \(3\) | \(I_{3}\) | Split multiplicative | \(-1\) | \(1\) | \(3\) | \(3\) |
Galois Representations
The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.
| prime | Image of Galois Representation |
|---|---|
| \(2\) | 2B |
| \(3\) | 3B.1.1 |
Isogenies and isogeny class
This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\)
2, 3 and 6.
Its isogeny class
252.1-b
consists of curves linked by isogenies of
degrees dividing 6.
Base change
This elliptic curve is a \(\Q\)-curve. It is the base change of the following 2 elliptic curves:
| Base field | Curve |
|---|---|
| \(\Q\) | 84.b4 |
| \(\Q\) | 9408.r4 |