Properties

Label 2.2.5.1-4205.1-c1
Base field \(\Q(\sqrt{5}) \)
Conductor norm \( 4205 \)
CM no
Base change yes
Q-curve yes
Torsion order \( 2 \)
Rank \( 2 \)

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Base field \(\Q(\sqrt{5}) \)

Generator \(\phi\), with minimal polynomial \( x^{2} - x - 1 \); class number \(1\).

Copy content comment:Define the base number field
 
Copy content sage:R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([-1, -1, 1]))
 
Copy content gp:K = nfinit(Polrev([-1, -1, 1]));
 
Copy content magma:R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-1, -1, 1]);
 

Weierstrass equation

\({y}^2+{x}{y}+{y}={x}^{3}-{x}^{2}+2{x}+6\)
Copy content comment:Define the curve
 
Copy content sage:E = EllipticCurve([K([1,0]),K([-1,0]),K([1,0]),K([2,0]),K([6,0])])
 
Copy content gp:E = ellinit([Polrev([1,0]),Polrev([-1,0]),Polrev([1,0]),Polrev([2,0]),Polrev([6,0])], K);
 
Copy content magma:E := EllipticCurve([K![1,0],K![-1,0],K![1,0],K![2,0],K![6,0]]);
 

This is a global minimal model.

Copy content comment:Test whether it is a global minimal model
 
Copy content sage:E.is_global_minimal_model()
 

Mordell-Weil group structure

\(\Z \oplus \Z \oplus \Z/{2}\Z\)

Mordell-Weil generators

$P$$\hat{h}(P)$Order
$\left(-5 \phi + 10 : -20 \phi + 27 : 1\right)$$0.33065484183922733904483467200564424690$$\infty$
$\left(5 \phi + 2 : -16 \phi - 11 : 1\right)$$0.91511247170379445111561888202729221522$$\infty$
$\left(-\frac{5}{4} : \frac{1}{8} : 1\right)$$0$$2$

Invariants

Conductor: $\frak{N}$ = \((-58\phi+29)\) = \((-2\phi+1)\cdot(\phi+5)\cdot(\phi-6)\)
Copy content comment:Compute the conductor
 
Copy content sage:E.conductor()
 
Copy content gp:ellglobalred(E)[1]
 
Copy content magma:Conductor(E);
 
Conductor norm: $N(\frak{N})$ = \( 4205 \) = \(5\cdot29\cdot29\)
Copy content comment:Compute the norm of the conductor
 
Copy content sage:E.conductor().norm()
 
Copy content gp:idealnorm(K, ellglobalred(E)[1])
 
Copy content magma:Norm(Conductor(E));
 
Discriminant: $\Delta$ = $-21025$
Discriminant ideal: $\frak{D}_{\mathrm{min}} = (\Delta)$ = \((-21025)\) = \((-2\phi+1)^{4}\cdot(\phi+5)^{2}\cdot(\phi-6)^{2}\)
Copy content comment:Compute the discriminant
 
Copy content sage:E.discriminant()
 
Copy content gp:E.disc
 
Copy content magma:Discriminant(E);
 
Discriminant norm: $N(\frak{D}_{\mathrm{min}}) = N(\Delta)$ = \( 442050625 \) = \(5^{4}\cdot29^{2}\cdot29^{2}\)
Copy content comment:Compute the norm of the discriminant
 
Copy content sage:E.discriminant().norm()
 
Copy content gp:norm(E.disc)
 
Copy content magma:Norm(Discriminant(E));
 
j-invariant: $j$ = \( \frac{1367631}{21025} \)
Copy content comment:Compute the j-invariant
 
Copy content sage:E.j_invariant()
 
Copy content gp:E.j
 
Copy content magma:jInvariant(E);
 
Endomorphism ring: $\mathrm{End}(E)$ = \(\Z\)   
Geometric endomorphism ring: $\mathrm{End}(E_{\overline{\Q}})$ = \(\Z\)    (no potential complex multiplication)
Copy content comment:Test for Complex Multiplication
 
Copy content sage:E.has_cm(), E.cm_discriminant()
 
Copy content magma:HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{ST}(E)$ = $\mathrm{SU}(2)$

BSD invariants

Analytic rank: $r_{\mathrm{an}}$= \( 2 \)
Copy content comment:Compute the Mordell-Weil rank
 
Copy content sage:E.rank()
 
Copy content magma:Rank(E);
 
Mordell-Weil rank: $r$ = \(2\)
Regulator: $\mathrm{Reg}(E/K)$ \( 0.075277452513117347572392198198498563113 \)
Néron-Tate Regulator: $\mathrm{Reg}_{\mathrm{NT}}(E/K)$ \( 0.3011098100524693902895687927939942524520 \)
Global period: $\Omega(E/K)$ \( 8.0985181574069509503779091572481069697 \)
Tamagawa product: $\prod_{\frak{p}}c_{\frak{p}}$= \( 8 \)  =  \(2\cdot2\cdot2\)
Torsion order: $\#E(K)_{\mathrm{tor}}$= \(2\)
Special value: $L^{(r)}(E/K,1)/r!$ \( 2.1810994018257754418683213228082654081 \)
Analytic order of Ш: Ш${}_{\mathrm{an}}$= \( 1 \) (rounded)

BSD formula

$$\begin{aligned}2.181099402 \approx L^{(2)}(E/K,1)/2! & \overset{?}{=} \frac{ \# ะจ(E/K) \cdot \Omega(E/K) \cdot \mathrm{Reg}_{\mathrm{NT}}(E/K) \cdot \prod_{\mathfrak{p}} c_{\mathfrak{p}} } { \#E(K)_{\mathrm{tor}}^2 \cdot \left|d_K\right|^{1/2} } \\ & \approx \frac{ 1 \cdot 8.098518 \cdot 0.301110 \cdot 8 } { {2^2 \cdot 2.236068} } \\ & \approx 2.181099402 \end{aligned}$$

Local data at primes of bad reduction

Copy content comment:Compute the local reduction data at primes of bad reduction
 
Copy content sage:E.local_data()
 
Copy content magma:LocalInformation(E);
 

This elliptic curve is semistable. There are 3 primes $\frak{p}$ of bad reduction.

$\mathfrak{p}$ $N(\mathfrak{p})$ Tamagawa number Kodaira symbol Reduction type Root number \(\mathrm{ord}_{\mathfrak{p}}(\mathfrak{N}\)) \(\mathrm{ord}_{\mathfrak{p}}(\mathfrak{D}_{\mathrm{min}}\)) \(\mathrm{ord}_{\mathfrak{p}}(\mathrm{den}(j))\)
\((-2\phi+1)\) \(5\) \(2\) \(I_{4}\) Non-split multiplicative \(1\) \(1\) \(4\) \(4\)
\((\phi+5)\) \(29\) \(2\) \(I_{2}\) Non-split multiplicative \(1\) \(1\) \(2\) \(2\)
\((\phi-6)\) \(29\) \(2\) \(I_{2}\) Non-split multiplicative \(1\) \(1\) \(2\) \(2\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2.
Its isogeny class 4205.1-c consists of curves linked by isogenies of degree 2.

Base change

This elliptic curve is a \(\Q\)-curve. It is the base change of the following 2 elliptic curves:

Base field Curve
\(\Q\) 145.a2
\(\Q\) 725.a2