Base field \(\Q(\sqrt{5}) \)
Generator \(\phi\), with minimal polynomial \( x^{2} - x - 1 \); class number \(1\).
Weierstrass equation
This is a global minimal model.
Mordell-Weil group structure
\(\Z \oplus \Z/{3}\Z\)
Mordell-Weil generators
$P$ | $\hat{h}(P)$ | Order |
---|---|---|
$\left(-2 \phi + 9 : -8 \phi + 12 : 1\right)$ | $0.021400148006828586228189049877086540462$ | $\infty$ |
$\left(4 : -8 : 1\right)$ | $0$ | $3$ |
Invariants
Conductor: | $\frak{N}$ | = | \((-44\phi+22)\) | = | \((2)\cdot(-2\phi+1)\cdot(-3\phi+2)\cdot(-3\phi+1)\) |
| |||||
Conductor norm: | $N(\frak{N})$ | = | \( 2420 \) | = | \(4\cdot5\cdot11\cdot11\) |
| |||||
Discriminant: | $\Delta$ | = | $-851840$ | ||
Discriminant ideal: | $\frak{D}_{\mathrm{min}} = (\Delta)$ | = | \((-851840)\) | = | \((2)^{7}\cdot(-2\phi+1)^{2}\cdot(-3\phi+2)^{3}\cdot(-3\phi+1)^{3}\) |
| |||||
Discriminant norm: | $N(\frak{D}_{\mathrm{min}}) = N(\Delta)$ | = | \( 725631385600 \) | = | \(4^{7}\cdot5^{2}\cdot11^{3}\cdot11^{3}\) |
| |||||
j-invariant: | $j$ | = | \( -\frac{76711450249}{851840} \) | ||
| |||||
Endomorphism ring: | $\mathrm{End}(E)$ | = | \(\Z\) | ||
Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) | ||
| |||||
Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ |
BSD invariants
Analytic rank: | $r_{\mathrm{an}}$ | = | \( 1 \) |
|
|||
Mordell-Weil rank: | $r$ | = | \(1\) |
Regulator: | $\mathrm{Reg}(E/K)$ | ≈ | \( 0.021400148006828586228189049877086540462 \) |
Néron-Tate Regulator: | $\mathrm{Reg}_{\mathrm{NT}}(E/K)$ | ≈ | \( 0.04280029601365717245637809975417308092400 \) |
Global period: | $\Omega(E/K)$ | ≈ | \( 7.9872589102658578316211610028269686409 \) |
Tamagawa product: | $\prod_{\frak{p}}c_{\frak{p}}$ | = | \( 126 \) = \(7\cdot2\cdot3\cdot3\) |
Torsion order: | $\#E(K)_{\mathrm{tor}}$ | = | \(3\) |
Special value: | $L^{(r)}(E/K,1)/r!$ | ≈ | \( 2.1403636597447062604173358269264410705 \) |
Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | = | \( 1 \) (rounded) |
BSD formula
$$\begin{aligned}2.140363660 \approx L'(E/K,1) & \overset{?}{=} \frac{ \# ะจ(E/K) \cdot \Omega(E/K) \cdot \mathrm{Reg}_{\mathrm{NT}}(E/K) \cdot \prod_{\mathfrak{p}} c_{\mathfrak{p}} } { \#E(K)_{\mathrm{tor}}^2 \cdot \left|d_K\right|^{1/2} } \\ & \approx \frac{ 1 \cdot 7.987259 \cdot 0.042800 \cdot 126 } { {3^2 \cdot 2.236068} } \\ & \approx 2.140363660 \end{aligned}$$
Local data at primes of bad reduction
This elliptic curve is semistable. There are 4 primes $\frak{p}$ of bad reduction.
$\mathfrak{p}$ | $N(\mathfrak{p})$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | \(\mathrm{ord}_{\mathfrak{p}}(\mathfrak{N}\)) | \(\mathrm{ord}_{\mathfrak{p}}(\mathfrak{D}_{\mathrm{min}}\)) | \(\mathrm{ord}_{\mathfrak{p}}(\mathrm{den}(j))\) |
---|---|---|---|---|---|---|---|---|
\((2)\) | \(4\) | \(7\) | \(I_{7}\) | Split multiplicative | \(-1\) | \(1\) | \(7\) | \(7\) |
\((-2\phi+1)\) | \(5\) | \(2\) | \(I_{2}\) | Non-split multiplicative | \(1\) | \(1\) | \(2\) | \(2\) |
\((-3\phi+2)\) | \(11\) | \(3\) | \(I_{3}\) | Split multiplicative | \(-1\) | \(1\) | \(3\) | \(3\) |
\((-3\phi+1)\) | \(11\) | \(3\) | \(I_{3}\) | Split multiplicative | \(-1\) | \(1\) | \(3\) | \(3\) |
Galois Representations
The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.
prime | Image of Galois Representation |
---|---|
\(3\) | 3B.1.1 |
Isogenies and isogeny class
This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\)
3.
Its isogeny class
2420.1-e
consists of curves linked by isogenies of
degree 3.
Base change
This elliptic curve is a \(\Q\)-curve. It is the base change of the following 2 elliptic curves:
Base field | Curve |
---|---|
\(\Q\) | 110.a1 |
\(\Q\) | 550.i1 |