Learn more

Refine search


Results (14 matches)

  displayed columns for results
Label Class Base field Conductor norm Rank Torsion CM Sato-Tate Regulator Period Leading coeff j-invariant Weierstrass coefficients Weierstrass equation
2401.1-a1 2401.1-a \(\Q(\sqrt{5}) \) \( 7^{4} \) 0 $\mathsf{trivial}$ $\mathrm{SU}(2)$ $1$ $4.444942730$ 1.987838820 \( -162677523113838677 \) \( \bigl[\phi + 1\) , \( -\phi - 1\) , \( 1\) , \( -41617 \phi - 41617\) , \( 5859391 \phi + 4394543\bigr] \) ${y}^2+\left(\phi+1\right){x}{y}+{y}={x}^{3}+\left(-\phi-1\right){x}^{2}+\left(-41617\phi-41617\right){x}+5859391\phi+4394543$
2401.1-a2 2401.1-a \(\Q(\sqrt{5}) \) \( 7^{4} \) 0 $\mathsf{trivial}$ $\mathrm{SU}(2)$ $1$ $4.444942730$ 1.987838820 \( -9317 \) \( \bigl[\phi + 1\) , \( -\phi - 1\) , \( 1\) , \( -2 \phi - 2\) , \( -\phi - 1\bigr] \) ${y}^2+\left(\phi+1\right){x}{y}+{y}={x}^{3}+\left(-\phi-1\right){x}^{2}+\left(-2\phi-2\right){x}-\phi-1$
2401.1-b1 2401.1-b \(\Q(\sqrt{5}) \) \( 7^{4} \) 0 $\mathsf{trivial}$ $-35$ $N(\mathrm{U}(1))$ $1$ $2.437755509$ 2.180394812 \( -52756480 a - 32604160 \) \( \bigl[0\) , \( -1\) , \( 1\) , \( -14 \phi + 19\) , \( 21 \phi - 36\bigr] \) ${y}^2+{y}={x}^{3}-{x}^{2}+\left(-14\phi+19\right){x}+21\phi-36$
2401.1-b2 2401.1-b \(\Q(\sqrt{5}) \) \( 7^{4} \) 0 $\mathsf{trivial}$ $-35$ $N(\mathrm{U}(1))$ $1$ $2.437755509$ 2.180394812 \( -52756480 a - 32604160 \) \( \bigl[0\) , \( 1\) , \( 1\) , \( -686 \phi + 915\) , \( -5831 \phi + 10420\bigr] \) ${y}^2+{y}={x}^{3}+{x}^{2}+\left(-686\phi+915\right){x}-5831\phi+10420$
2401.1-b3 2401.1-b \(\Q(\sqrt{5}) \) \( 7^{4} \) 0 $\mathsf{trivial}$ $-35$ $N(\mathrm{U}(1))$ $1$ $2.437755509$ 2.180394812 \( 52756480 a - 85360640 \) \( \bigl[0\) , \( -1\) , \( 1\) , \( 14 \phi + 5\) , \( -21 \phi - 15\bigr] \) ${y}^2+{y}={x}^{3}-{x}^{2}+\left(14\phi+5\right){x}-21\phi-15$
2401.1-b4 2401.1-b \(\Q(\sqrt{5}) \) \( 7^{4} \) 0 $\mathsf{trivial}$ $-35$ $N(\mathrm{U}(1))$ $1$ $2.437755509$ 2.180394812 \( 52756480 a - 85360640 \) \( \bigl[0\) , \( 1\) , \( 1\) , \( 686 \phi + 229\) , \( 5831 \phi + 4589\bigr] \) ${y}^2+{y}={x}^{3}+{x}^{2}+\left(686\phi+229\right){x}+5831\phi+4589$
2401.1-c1 2401.1-c \(\Q(\sqrt{5}) \) \( 7^{4} \) 0 $\mathsf{trivial}$ $\mathrm{SU}(2)$ $1$ $0.003990320$ 2.443015397 \( -162677523113838677 \) \( \bigl[\phi + 1\) , \( \phi\) , \( \phi\) , \( -2039213 \phi - 2039213\) , \( -2007731903 \phi - 1505289124\bigr] \) ${y}^2+\left(\phi+1\right){x}{y}+\phi{y}={x}^{3}+\phi{x}^{2}+\left(-2039213\phi-2039213\right){x}-2007731903\phi-1505289124$
2401.1-c2 2401.1-c \(\Q(\sqrt{5}) \) \( 7^{4} \) 0 $\mathsf{trivial}$ $\mathrm{SU}(2)$ $1$ $5.462748497$ 2.443015397 \( -9317 \) \( \bigl[\phi\) , \( \phi - 1\) , \( \phi\) , \( 78 \phi - 157\) , \( -575 \phi + 986\bigr] \) ${y}^2+\phi{x}{y}+\phi{y}={x}^{3}+\left(\phi-1\right){x}^{2}+\left(78\phi-157\right){x}-575\phi+986$
2401.1-d1 2401.1-d \(\Q(\sqrt{5}) \) \( 7^{4} \) 0 $\mathsf{trivial}$ $\mathrm{SU}(2)$ $1$ $2.200325409$ 1.968030875 \( -\frac{2887553024}{16807} \) \( \bigl[0\) , \( \phi - 1\) , \( 1\) , \( -1454 \phi - 1453\) , \( 37868 \phi + 28764\bigr] \) ${y}^2+{y}={x}^{3}+\left(\phi-1\right){x}^{2}+\left(-1454\phi-1453\right){x}+37868\phi+28764$
2401.1-d2 2401.1-d \(\Q(\sqrt{5}) \) \( 7^{4} \) 0 $\mathsf{trivial}$ $\mathrm{SU}(2)$ $1$ $2.200325409$ 1.968030875 \( \frac{4096}{7} \) \( \bigl[0\) , \( -\phi\) , \( 1\) , \( -16 \phi + 33\) , \( 58 \phi - 106\bigr] \) ${y}^2+{y}={x}^{3}-\phi{x}^{2}+\left(-16\phi+33\right){x}+58\phi-106$
2401.1-e1 2401.1-e \(\Q(\sqrt{5}) \) \( 7^{4} \) 0 $\Z/2\Z$ $-7$ $N(\mathrm{U}(1))$ $1$ $3.737694151$ 0.835773820 \( -3375 \) \( \bigl[1\) , \( -1\) , \( 0\) , \( -2\) , \( -1\bigr] \) ${y}^2+{x}{y}={x}^{3}-{x}^{2}-2{x}-1$
2401.1-e2 2401.1-e \(\Q(\sqrt{5}) \) \( 7^{4} \) 0 $\Z/2\Z$ $-7$ $N(\mathrm{U}(1))$ $1$ $3.737694151$ 0.835773820 \( -3375 \) \( \bigl[1\) , \( -1\) , \( 0\) , \( -107\) , \( 552\bigr] \) ${y}^2+{x}{y}={x}^{3}-{x}^{2}-107{x}+552$
2401.1-e3 2401.1-e \(\Q(\sqrt{5}) \) \( 7^{4} \) 0 $\Z/2\Z$ $-28$ $N(\mathrm{U}(1))$ $1$ $3.737694151$ 0.835773820 \( 16581375 \) \( \bigl[1\) , \( -1\) , \( 0\) , \( -37\) , \( -78\bigr] \) ${y}^2+{x}{y}={x}^{3}-{x}^{2}-37{x}-78$
2401.1-e4 2401.1-e \(\Q(\sqrt{5}) \) \( 7^{4} \) 0 $\Z/2\Z$ $-28$ $N(\mathrm{U}(1))$ $1$ $3.737694151$ 0.835773820 \( 16581375 \) \( \bigl[1\) , \( -1\) , \( 0\) , \( -1822\) , \( 30393\bigr] \) ${y}^2+{x}{y}={x}^{3}-{x}^{2}-1822{x}+30393$
  displayed columns for results

  *The rank, regulator and analytic order of Ш are not known for all curves in the database; curves for which these are unknown will not appear in searches specifying one of these quantities.