Label |
Class |
Class size |
Class degree |
Base field |
Field degree |
Field signature |
Conductor |
Conductor norm |
Discriminant norm |
Root analytic conductor |
Bad primes |
Rank |
Torsion |
CM |
CM |
Sato-Tate |
$\Q$-curve |
Base change |
Semistable |
Potentially good |
Nonmax $\ell$ |
mod-$\ell$ images |
$Ш_{\textrm{an}}$ |
Tamagawa |
Regulator |
Period |
Leading coeff |
j-invariant |
Weierstrass coefficients |
Weierstrass equation |
2401.1-a1 |
2401.1-a |
$2$ |
$37$ |
\(\Q(\sqrt{5}) \) |
$2$ |
$[2, 0]$ |
2401.1 |
\( 7^{4} \) |
\( 7^{4} \) |
$1.39869$ |
$(7)$ |
0 |
$\mathsf{trivial}$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
✓ |
$37$ |
37B.11.2 |
$1$ |
\( 1 \) |
$1$ |
$4.444942730$ |
1.987838820 |
\( -162677523113838677 \) |
\( \bigl[\phi + 1\) , \( -\phi - 1\) , \( 1\) , \( -41617 \phi - 41617\) , \( 5859391 \phi + 4394543\bigr] \) |
${y}^2+\left(\phi+1\right){x}{y}+{y}={x}^{3}+\left(-\phi-1\right){x}^{2}+\left(-41617\phi-41617\right){x}+5859391\phi+4394543$ |
2401.1-a2 |
2401.1-a |
$2$ |
$37$ |
\(\Q(\sqrt{5}) \) |
$2$ |
$[2, 0]$ |
2401.1 |
\( 7^{4} \) |
\( 7^{4} \) |
$1.39869$ |
$(7)$ |
0 |
$\mathsf{trivial}$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
✓ |
$37$ |
37B.11.1 |
$1$ |
\( 1 \) |
$1$ |
$4.444942730$ |
1.987838820 |
\( -9317 \) |
\( \bigl[\phi + 1\) , \( -\phi - 1\) , \( 1\) , \( -2 \phi - 2\) , \( -\phi - 1\bigr] \) |
${y}^2+\left(\phi+1\right){x}{y}+{y}={x}^{3}+\left(-\phi-1\right){x}^{2}+\left(-2\phi-2\right){x}-\phi-1$ |
2401.1-b1 |
2401.1-b |
$4$ |
$35$ |
\(\Q(\sqrt{5}) \) |
$2$ |
$[2, 0]$ |
2401.1 |
\( 7^{4} \) |
\( 7^{6} \) |
$1.39869$ |
$(7)$ |
0 |
$\mathsf{trivial}$ |
$\textsf{potential}$ |
$-35$ |
$N(\mathrm{U}(1))$ |
✓ |
|
|
✓ |
$7$ |
7B.1.5 |
$1$ |
\( 2 \) |
$1$ |
$2.437755509$ |
2.180394812 |
\( -52756480 a - 32604160 \) |
\( \bigl[0\) , \( -1\) , \( 1\) , \( -14 \phi + 19\) , \( 21 \phi - 36\bigr] \) |
${y}^2+{y}={x}^{3}-{x}^{2}+\left(-14\phi+19\right){x}+21\phi-36$ |
2401.1-b2 |
2401.1-b |
$4$ |
$35$ |
\(\Q(\sqrt{5}) \) |
$2$ |
$[2, 0]$ |
2401.1 |
\( 7^{4} \) |
\( 7^{18} \) |
$1.39869$ |
$(7)$ |
0 |
$\mathsf{trivial}$ |
$\textsf{potential}$ |
$-35$ |
$N(\mathrm{U}(1))$ |
✓ |
|
|
✓ |
$7$ |
7B.1.2 |
$1$ |
\( 2 \) |
$1$ |
$2.437755509$ |
2.180394812 |
\( -52756480 a - 32604160 \) |
\( \bigl[0\) , \( 1\) , \( 1\) , \( -686 \phi + 915\) , \( -5831 \phi + 10420\bigr] \) |
${y}^2+{y}={x}^{3}+{x}^{2}+\left(-686\phi+915\right){x}-5831\phi+10420$ |
2401.1-b3 |
2401.1-b |
$4$ |
$35$ |
\(\Q(\sqrt{5}) \) |
$2$ |
$[2, 0]$ |
2401.1 |
\( 7^{4} \) |
\( 7^{6} \) |
$1.39869$ |
$(7)$ |
0 |
$\mathsf{trivial}$ |
$\textsf{potential}$ |
$-35$ |
$N(\mathrm{U}(1))$ |
✓ |
|
|
✓ |
$7$ |
7B.1.5 |
$1$ |
\( 2 \) |
$1$ |
$2.437755509$ |
2.180394812 |
\( 52756480 a - 85360640 \) |
\( \bigl[0\) , \( -1\) , \( 1\) , \( 14 \phi + 5\) , \( -21 \phi - 15\bigr] \) |
${y}^2+{y}={x}^{3}-{x}^{2}+\left(14\phi+5\right){x}-21\phi-15$ |
2401.1-b4 |
2401.1-b |
$4$ |
$35$ |
\(\Q(\sqrt{5}) \) |
$2$ |
$[2, 0]$ |
2401.1 |
\( 7^{4} \) |
\( 7^{18} \) |
$1.39869$ |
$(7)$ |
0 |
$\mathsf{trivial}$ |
$\textsf{potential}$ |
$-35$ |
$N(\mathrm{U}(1))$ |
✓ |
|
|
✓ |
$7$ |
7B.1.2 |
$1$ |
\( 2 \) |
$1$ |
$2.437755509$ |
2.180394812 |
\( 52756480 a - 85360640 \) |
\( \bigl[0\) , \( 1\) , \( 1\) , \( 686 \phi + 229\) , \( 5831 \phi + 4589\bigr] \) |
${y}^2+{y}={x}^{3}+{x}^{2}+\left(686\phi+229\right){x}+5831\phi+4589$ |
2401.1-c1 |
2401.1-c |
$2$ |
$37$ |
\(\Q(\sqrt{5}) \) |
$2$ |
$[2, 0]$ |
2401.1 |
\( 7^{4} \) |
\( 7^{16} \) |
$1.39869$ |
$(7)$ |
0 |
$\mathsf{trivial}$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
✓ |
$37$ |
37B.10.2 |
$1369$ |
\( 1 \) |
$1$ |
$0.003990320$ |
2.443015397 |
\( -162677523113838677 \) |
\( \bigl[\phi + 1\) , \( \phi\) , \( \phi\) , \( -2039213 \phi - 2039213\) , \( -2007731903 \phi - 1505289124\bigr] \) |
${y}^2+\left(\phi+1\right){x}{y}+\phi{y}={x}^{3}+\phi{x}^{2}+\left(-2039213\phi-2039213\right){x}-2007731903\phi-1505289124$ |
2401.1-c2 |
2401.1-c |
$2$ |
$37$ |
\(\Q(\sqrt{5}) \) |
$2$ |
$[2, 0]$ |
2401.1 |
\( 7^{4} \) |
\( 7^{16} \) |
$1.39869$ |
$(7)$ |
0 |
$\mathsf{trivial}$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
✓ |
$37$ |
37B.10.1 |
$1$ |
\( 1 \) |
$1$ |
$5.462748497$ |
2.443015397 |
\( -9317 \) |
\( \bigl[\phi\) , \( \phi - 1\) , \( \phi\) , \( 78 \phi - 157\) , \( -575 \phi + 986\bigr] \) |
${y}^2+\phi{x}{y}+\phi{y}={x}^{3}+\left(\phi-1\right){x}^{2}+\left(78\phi-157\right){x}-575\phi+986$ |
2401.1-d1 |
2401.1-d |
$2$ |
$5$ |
\(\Q(\sqrt{5}) \) |
$2$ |
$[2, 0]$ |
2401.1 |
\( 7^{4} \) |
\( 7^{22} \) |
$1.39869$ |
$(7)$ |
0 |
$\mathsf{trivial}$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
$5$ |
5B.4.1[2] |
$1$ |
\( 2 \) |
$1$ |
$2.200325409$ |
1.968030875 |
\( -\frac{2887553024}{16807} \) |
\( \bigl[0\) , \( \phi - 1\) , \( 1\) , \( -1454 \phi - 1453\) , \( 37868 \phi + 28764\bigr] \) |
${y}^2+{y}={x}^{3}+\left(\phi-1\right){x}^{2}+\left(-1454\phi-1453\right){x}+37868\phi+28764$ |
2401.1-d2 |
2401.1-d |
$2$ |
$5$ |
\(\Q(\sqrt{5}) \) |
$2$ |
$[2, 0]$ |
2401.1 |
\( 7^{4} \) |
\( 7^{14} \) |
$1.39869$ |
$(7)$ |
0 |
$\mathsf{trivial}$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
$5$ |
5B.4.1[2] |
$1$ |
\( 2 \) |
$1$ |
$2.200325409$ |
1.968030875 |
\( \frac{4096}{7} \) |
\( \bigl[0\) , \( -\phi\) , \( 1\) , \( -16 \phi + 33\) , \( 58 \phi - 106\bigr] \) |
${y}^2+{y}={x}^{3}-\phi{x}^{2}+\left(-16\phi+33\right){x}+58\phi-106$ |
2401.1-e1 |
2401.1-e |
$4$ |
$14$ |
\(\Q(\sqrt{5}) \) |
$2$ |
$[2, 0]$ |
2401.1 |
\( 7^{4} \) |
\( 7^{6} \) |
$1.39869$ |
$(7)$ |
0 |
$\Z/2\Z$ |
$\textsf{potential}$ |
$-7$ |
$N(\mathrm{U}(1))$ |
✓ |
✓ |
|
✓ |
$7$ |
7B.1.5 |
$1$ |
\( 2 \) |
$1$ |
$3.737694151$ |
0.835773820 |
\( -3375 \) |
\( \bigl[1\) , \( -1\) , \( 0\) , \( -2\) , \( -1\bigr] \) |
${y}^2+{x}{y}={x}^{3}-{x}^{2}-2{x}-1$ |
2401.1-e2 |
2401.1-e |
$4$ |
$14$ |
\(\Q(\sqrt{5}) \) |
$2$ |
$[2, 0]$ |
2401.1 |
\( 7^{4} \) |
\( 7^{18} \) |
$1.39869$ |
$(7)$ |
0 |
$\Z/2\Z$ |
$\textsf{potential}$ |
$-7$ |
$N(\mathrm{U}(1))$ |
✓ |
✓ |
|
✓ |
$7$ |
7B.1.2 |
$1$ |
\( 2 \) |
$1$ |
$3.737694151$ |
0.835773820 |
\( -3375 \) |
\( \bigl[1\) , \( -1\) , \( 0\) , \( -107\) , \( 552\bigr] \) |
${y}^2+{x}{y}={x}^{3}-{x}^{2}-107{x}+552$ |
2401.1-e3 |
2401.1-e |
$4$ |
$14$ |
\(\Q(\sqrt{5}) \) |
$2$ |
$[2, 0]$ |
2401.1 |
\( 7^{4} \) |
\( 7^{6} \) |
$1.39869$ |
$(7)$ |
0 |
$\Z/2\Z$ |
$\textsf{potential}$ |
$-28$ |
$N(\mathrm{U}(1))$ |
✓ |
✓ |
|
✓ |
$7$ |
7B.1.5 |
$1$ |
\( 2 \) |
$1$ |
$3.737694151$ |
0.835773820 |
\( 16581375 \) |
\( \bigl[1\) , \( -1\) , \( 0\) , \( -37\) , \( -78\bigr] \) |
${y}^2+{x}{y}={x}^{3}-{x}^{2}-37{x}-78$ |
2401.1-e4 |
2401.1-e |
$4$ |
$14$ |
\(\Q(\sqrt{5}) \) |
$2$ |
$[2, 0]$ |
2401.1 |
\( 7^{4} \) |
\( 7^{18} \) |
$1.39869$ |
$(7)$ |
0 |
$\Z/2\Z$ |
$\textsf{potential}$ |
$-28$ |
$N(\mathrm{U}(1))$ |
✓ |
✓ |
|
✓ |
$7$ |
7B.1.2 |
$1$ |
\( 2 \) |
$1$ |
$3.737694151$ |
0.835773820 |
\( 16581375 \) |
\( \bigl[1\) , \( -1\) , \( 0\) , \( -1822\) , \( 30393\bigr] \) |
${y}^2+{x}{y}={x}^{3}-{x}^{2}-1822{x}+30393$ |
*The rank, regulator and analytic order of Ш are
not known for all curves in the database; curves for which these are
unknown will not appear in searches specifying one of these
quantities.