Generator ϕ, with minimal polynomial
x2−x−1; class number 1.
sage:R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([-1, -1, 1]))
gp:K = nfinit(Polrev([-1, -1, 1]));
magma:R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-1, -1, 1]);
y2+y=x3−x2−10x−20
sage:E = EllipticCurve([K([0,0]),K([-1,0]),K([1,0]),K([-10,0]),K([-20,0])])
gp:E = ellinit([Polrev([0,0]),Polrev([-1,0]),Polrev([1,0]),Polrev([-10,0]),Polrev([-20,0])], K);
magma:E := EllipticCurve([K![0,0],K![-1,0],K![1,0],K![-10,0],K![-20,0]]);
This is a global minimal model.
sage:E.is_global_minimal_model()
Z/5Z
Conductor: |
N |
= |
(11) |
= |
(−3ϕ+2)⋅(−3ϕ+1) |
sage:E.conductor()
gp:ellglobalred(E)[1]
magma:Conductor(E);
|
Conductor norm: |
N(N) |
= |
121 |
= |
11⋅11 |
sage:E.conductor().norm()
gp:idealnorm(ellglobalred(E)[1])
magma:Norm(Conductor(E));
|
Discriminant: |
Δ |
= |
−161051 |
Discriminant ideal:
|
Dmin=(Δ)
|
= |
(−161051) |
= |
(−3ϕ+2)5⋅(−3ϕ+1)5 |
sage:E.discriminant()
gp:E.disc
magma:Discriminant(E);
|
Discriminant norm:
|
N(Dmin)=N(Δ)
|
= |
25937424601 |
= |
115⋅115 |
sage:E.discriminant().norm()
gp:norm(E.disc)
magma:Norm(Discriminant(E));
|
j-invariant: |
j |
= |
−161051122023936 |
sage:E.j_invariant()
gp:E.j
magma:jInvariant(E);
|
Endomorphism ring: |
End(E) |
= |
Z
|
Geometric endomorphism ring: |
End(EQ) |
= |
Z
(no potential complex multiplication)
|
sage:E.has_cm(), E.cm_discriminant()
magma:HasComplexMultiplication(E);
|
Sato-Tate group: |
ST(E) |
= |
SU(2) |
Analytic rank: |
ran | = |
0
|
sage:E.rank()
magma:Rank(E);
|
Mordell-Weil rank: |
r |
= |
0 |
Regulator:
|
Reg(E/K) |
= |
1
|
Néron-Tate Regulator:
|
RegNT(E/K) |
= |
1
|
Global period: |
Ω(E/K) | ≈ |
1.6108922580697880236230571558378844726 |
Tamagawa product: |
∏pcp | = |
25
= 5⋅5
|
Torsion order: |
#E(K)tor | = |
5 |
Special value: |
L(r)(E/K,1)/r! |
≈ | 0.72041291869443603668204504465720512379 |
Analytic order of Ш:
|
Шan | = |
1 (rounded) |
0.720412919≈L(E/K,1)=?#E(K)tor2⋅∣dK∣1/2#Ш(E/K)⋅Ω(E/K)⋅RegNT(E/K)⋅∏pcp≈52⋅2.2360681⋅1.610892⋅1⋅25≈0.720412919
sage:E.local_data()
magma:LocalInformation(E);
This elliptic curve is semistable.
There
are 2 primes p
of bad reduction.
This curve has non-trivial cyclic isogenies of degree d for d=
5.
Its isogeny class
121.1-a
consists of curves linked by isogenies of
degrees dividing 25.