Properties

Base field \(\Q(\sqrt{5}) \)
Label 2.2.5.1-1024.1-h
Conductor 1024.1
Rank \( 0 \)

Related objects

Learn more

Base field \(\Q(\sqrt{5}) \)

Generator \(\phi\), with minimal polynomial \( x^{2} - x - 1 \); class number \(1\).

Rank

Rank: \( 0 \)

Isogeny matrix

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

Elliptic curves in class 1024.1-h over \(\Q(\sqrt{5}) \)

Isogeny class 1024.1-h contains 4 curves linked by isogenies of degrees dividing 4.

Curve label Weierstrass Coefficients
1024.1-h1 \( \bigl[0\) , \( \phi + 1\) , \( 0\) , \( 9 \phi - 1\) , \( -\phi - 8\bigr] \)
1024.1-h2 \( \bigl[0\) , \( 1\) , \( 0\) , \( \phi - 2\) , \( \phi - 2\bigr] \)
1024.1-h3 \( \bigl[0\) , \( 1\) , \( 0\) , \( -4 \phi + 3\) , \( 4 \phi - 5\bigr] \)
1024.1-h4 \( \bigl[0\) , \( 1\) , \( 0\) , \( \phi - 12\) , \( -13 \phi + 4\bigr] \)