Properties

Label 2.2.44.1-441.1-j1
Base field \(\Q(\sqrt{11}) \)
Conductor norm \( 441 \)
CM no
Base change no
Q-curve no
Torsion order \( 2 \)
Rank \( 1 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field \(\Q(\sqrt{11}) \)

Generator \(a\), with minimal polynomial \( x^{2} - 11 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([-11, 0, 1]))
 
gp: K = nfinit(Polrev([-11, 0, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-11, 0, 1]);
 

Weierstrass equation

\({y}^2+{x}{y}+{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(-20794a-68965\right){x}-1822436a-6044337\)
sage: E = EllipticCurve([K([1,0]),K([-1,-1]),K([1,0]),K([-68965,-20794]),K([-6044337,-1822436])])
 
gp: E = ellinit([Polrev([1,0]),Polrev([-1,-1]),Polrev([1,0]),Polrev([-68965,-20794]),Polrev([-6044337,-1822436])], K);
 
magma: E := EllipticCurve([K![1,0],K![-1,-1],K![1,0],K![-68965,-20794],K![-6044337,-1822436]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((21)\) = \((a+2)\cdot(a-2)\cdot(3)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 441 \) = \(7\cdot7\cdot9\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((11573604a+43401015)\) = \((a+2)^{4}\cdot(a-2)^{2}\cdot(3)^{10}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 410216697993249 \) = \(7^{4}\cdot7^{2}\cdot9^{10}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( -\frac{303371613810203}{141776649} a + \frac{335523283547294}{47258883} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(1\)
Generator $\left(-47 a - \frac{301}{2} : \frac{715}{4} a + \frac{2297}{4} : 1\right)$
Height \(1.3594806153831828604558875122455124661\)
Torsion structure: \(\Z/2\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(-47 a - \frac{629}{4} : \frac{47}{2} a + \frac{625}{8} : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 1 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(1\)
Regulator: \( 1.3594806153831828604558875122455124661 \)
Period: \( 1.2871724670729138829984482872717775686 \)
Tamagawa product: \( 40 \)  =  \(2\cdot2\cdot( 2 \cdot 5 )\)
Torsion order: \(2\)
Leading coefficient: \( 5.2761048603663785441492521881218973599 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((a+2)\) \(7\) \(2\) \(I_{4}\) Non-split multiplicative \(1\) \(1\) \(4\) \(4\)
\((a-2)\) \(7\) \(2\) \(I_{2}\) Non-split multiplicative \(1\) \(1\) \(2\) \(2\)
\((3)\) \(9\) \(10\) \(I_{10}\) Split multiplicative \(-1\) \(1\) \(10\) \(10\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2.
Its isogeny class 441.1-j consists of curves linked by isogenies of degree 2.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.