Learn more

Refine search


Results (1-50 of 2378 matches)

Next   Download to        
Label Class Base field Conductor norm Rank Torsion CM Regulator Period Leading coeff j-invariant Weierstrass coefficients Weierstrass equation
10.1-a1 10.1-a \(\Q(\sqrt{11}) \) \( 2 \cdot 5 \) $0$ $\Z/3\Z$ $1$ $43.11092390$ 0.722135146 \( -\frac{378329}{80} a + \frac{707609}{80} \) \( \bigl[a\) , \( a + 1\) , \( a\) , \( -8 a - 32\) , \( 15 a + 47\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^{3}+\left(a+1\right){x}^{2}+\left(-8a-32\right){x}+15a+47$
10.1-a2 10.1-a \(\Q(\sqrt{11}) \) \( 2 \cdot 5 \) $0$ $\mathsf{trivial}$ $1$ $4.790102655$ 0.722135146 \( -\frac{4874397503}{256000} a + \frac{16590792793}{256000} \) \( \bigl[a\) , \( a + 1\) , \( a\) , \( 72 a + 233\) , \( 47 a + 153\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^{3}+\left(a+1\right){x}^{2}+\left(72a+233\right){x}+47a+153$
10.1-b1 10.1-b \(\Q(\sqrt{11}) \) \( 2 \cdot 5 \) $0$ $\mathsf{trivial}$ $1$ $0.241155033$ 1.781418972 \( -\frac{466209435421917067326607}{10} a + \frac{1546241771017925012924657}{10} \) \( \bigl[1\) , \( a + 1\) , \( a + 1\) , \( -23541 a - 78106\) , \( -3623860 a - 12019033\bigr] \) ${y}^2+{x}{y}+\left(a+1\right){y}={x}^{3}+\left(a+1\right){x}^{2}+\left(-23541a-78106\right){x}-3623860a-12019033$
10.1-b2 10.1-b \(\Q(\sqrt{11}) \) \( 2 \cdot 5 \) $0$ $\Z/7\Z$ $1$ $11.81659665$ 1.781418972 \( -\frac{584688139}{1250000} a + \frac{1940357659}{1250000} \) \( \bigl[1\) , \( a + 1\) , \( a + 1\) , \( 14 a + 49\) , \( 2175 a + 7212\bigr] \) ${y}^2+{x}{y}+\left(a+1\right){y}={x}^{3}+\left(a+1\right){x}^{2}+\left(14a+49\right){x}+2175a+7212$
10.1-c1 10.1-c \(\Q(\sqrt{11}) \) \( 2 \cdot 5 \) $1$ $\mathsf{trivial}$ $0.411540706$ $8.658898230$ 1.074432388 \( -\frac{466209435421917067326607}{10} a + \frac{1546241771017925012924657}{10} \) \( \bigl[a\) , \( -a - 1\) , \( 1\) , \( -23543 a - 78105\) , \( 3600318 a + 11940924\bigr] \) ${y}^2+a{x}{y}+{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(-23543a-78105\right){x}+3600318a+11940924$
10.1-c2 10.1-c \(\Q(\sqrt{11}) \) \( 2 \cdot 5 \) $1$ $\mathsf{trivial}$ $0.058791529$ $8.658898230$ 1.074432388 \( -\frac{584688139}{1250000} a + \frac{1940357659}{1250000} \) \( \bigl[a\) , \( -a - 1\) , \( 1\) , \( 12 a + 50\) , \( -2162 a - 7166\bigr] \) ${y}^2+a{x}{y}+{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(12a+50\right){x}-2162a-7166$
10.1-d1 10.1-d \(\Q(\sqrt{11}) \) \( 2 \cdot 5 \) $1$ $\mathsf{trivial}$ $0.082400613$ $9.456690263$ 1.644641729 \( -\frac{378329}{80} a + \frac{707609}{80} \) \( \bigl[1\) , \( -a - 1\) , \( 0\) , \( -10 a - 31\) , \( -24 a - 79\bigr] \) ${y}^2+{x}{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(-10a-31\right){x}-24a-79$
10.1-d2 10.1-d \(\Q(\sqrt{11}) \) \( 2 \cdot 5 \) $1$ $\mathsf{trivial}$ $0.027466871$ $9.456690263$ 1.644641729 \( -\frac{4874397503}{256000} a + \frac{16590792793}{256000} \) \( \bigl[1\) , \( -a - 1\) , \( 0\) , \( 70 a + 234\) , \( 24 a + 80\bigr] \) ${y}^2+{x}{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(70a+234\right){x}+24a+80$
10.2-a1 10.2-a \(\Q(\sqrt{11}) \) \( 2 \cdot 5 \) $0$ $\Z/3\Z$ $1$ $43.11092390$ 0.722135146 \( \frac{378329}{80} a + \frac{707609}{80} \) \( \bigl[a\) , \( -a + 1\) , \( a\) , \( 8 a - 32\) , \( -15 a + 47\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(8a-32\right){x}-15a+47$
10.2-a2 10.2-a \(\Q(\sqrt{11}) \) \( 2 \cdot 5 \) $0$ $\mathsf{trivial}$ $1$ $4.790102655$ 0.722135146 \( \frac{4874397503}{256000} a + \frac{16590792793}{256000} \) \( \bigl[a\) , \( -a + 1\) , \( a\) , \( -72 a + 233\) , \( -47 a + 153\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(-72a+233\right){x}-47a+153$
10.2-b1 10.2-b \(\Q(\sqrt{11}) \) \( 2 \cdot 5 \) $0$ $\Z/7\Z$ $1$ $11.81659665$ 1.781418972 \( \frac{584688139}{1250000} a + \frac{1940357659}{1250000} \) \( \bigl[1\) , \( -a + 1\) , \( a + 1\) , \( -15 a + 49\) , \( -2176 a + 7212\bigr] \) ${y}^2+{x}{y}+\left(a+1\right){y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(-15a+49\right){x}-2176a+7212$
10.2-b2 10.2-b \(\Q(\sqrt{11}) \) \( 2 \cdot 5 \) $0$ $\mathsf{trivial}$ $1$ $0.241155033$ 1.781418972 \( \frac{466209435421917067326607}{10} a + \frac{1546241771017925012924657}{10} \) \( \bigl[1\) , \( -a + 1\) , \( a + 1\) , \( 23540 a - 78106\) , \( 3623859 a - 12019033\bigr] \) ${y}^2+{x}{y}+\left(a+1\right){y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(23540a-78106\right){x}+3623859a-12019033$
10.2-c1 10.2-c \(\Q(\sqrt{11}) \) \( 2 \cdot 5 \) $1$ $\mathsf{trivial}$ $0.058791529$ $8.658898230$ 1.074432388 \( \frac{584688139}{1250000} a + \frac{1940357659}{1250000} \) \( \bigl[a\) , \( a - 1\) , \( 1\) , \( -13 a + 50\) , \( 2162 a - 7166\bigr] \) ${y}^2+a{x}{y}+{y}={x}^{3}+\left(a-1\right){x}^{2}+\left(-13a+50\right){x}+2162a-7166$
10.2-c2 10.2-c \(\Q(\sqrt{11}) \) \( 2 \cdot 5 \) $1$ $\mathsf{trivial}$ $0.411540706$ $8.658898230$ 1.074432388 \( \frac{466209435421917067326607}{10} a + \frac{1546241771017925012924657}{10} \) \( \bigl[a\) , \( a - 1\) , \( 1\) , \( 23542 a - 78105\) , \( -3600318 a + 11940924\bigr] \) ${y}^2+a{x}{y}+{y}={x}^{3}+\left(a-1\right){x}^{2}+\left(23542a-78105\right){x}-3600318a+11940924$
10.2-d1 10.2-d \(\Q(\sqrt{11}) \) \( 2 \cdot 5 \) $1$ $\mathsf{trivial}$ $0.082400613$ $9.456690263$ 1.644641729 \( \frac{378329}{80} a + \frac{707609}{80} \) \( \bigl[1\) , \( a - 1\) , \( 0\) , \( 10 a - 31\) , \( 24 a - 79\bigr] \) ${y}^2+{x}{y}={x}^{3}+\left(a-1\right){x}^{2}+\left(10a-31\right){x}+24a-79$
10.2-d2 10.2-d \(\Q(\sqrt{11}) \) \( 2 \cdot 5 \) $1$ $\mathsf{trivial}$ $0.027466871$ $9.456690263$ 1.644641729 \( \frac{4874397503}{256000} a + \frac{16590792793}{256000} \) \( \bigl[1\) , \( a - 1\) , \( 0\) , \( -70 a + 234\) , \( -24 a + 80\bigr] \) ${y}^2+{x}{y}={x}^{3}+\left(a-1\right){x}^{2}+\left(-70a+234\right){x}-24a+80$
11.1-a1 11.1-a \(\Q(\sqrt{11}) \) \( 11 \) $0$ $\mathsf{trivial}$ $1$ $8.512583687$ 2.566640553 \( -\frac{52893159101157376}{11} \) \( \bigl[0\) , \( 1\) , \( a\) , \( -7820\) , \( 263577\bigr] \) ${y}^2+a{y}={x}^{3}+{x}^{2}-7820{x}+263577$
11.1-a2 11.1-a \(\Q(\sqrt{11}) \) \( 11 \) $0$ $\mathsf{trivial}$ $1$ $8.512583687$ 2.566640553 \( -\frac{122023936}{161051} \) \( \bigl[0\) , \( 1\) , \( a\) , \( -10\) , \( 17\bigr] \) ${y}^2+a{y}={x}^{3}+{x}^{2}-10{x}+17$
11.1-a3 11.1-a \(\Q(\sqrt{11}) \) \( 11 \) $0$ $\mathsf{trivial}$ $1$ $8.512583687$ 2.566640553 \( -\frac{4096}{11} \) \( \bigl[0\) , \( 1\) , \( a\) , \( 0\) , \( -3\bigr] \) ${y}^2+a{y}={x}^{3}+{x}^{2}-3$
11.1-b1 11.1-b \(\Q(\sqrt{11}) \) \( 11 \) $1$ $\mathsf{trivial}$ $22.07430201$ $0.064435690$ 0.857723124 \( -\frac{52893159101157376}{11} \) \( \bigl[0\) , \( -1\) , \( 1\) , \( -7820\) , \( -263580\bigr] \) ${y}^2+{y}={x}^{3}-{x}^{2}-7820{x}-263580$
11.1-b2 11.1-b \(\Q(\sqrt{11}) \) \( 11 \) $1$ $\Z/5\Z$ $4.414860402$ $1.610892258$ 0.857723124 \( -\frac{122023936}{161051} \) \( \bigl[0\) , \( -1\) , \( 1\) , \( -10\) , \( -20\bigr] \) ${y}^2+{y}={x}^{3}-{x}^{2}-10{x}-20$
11.1-b3 11.1-b \(\Q(\sqrt{11}) \) \( 11 \) $1$ $\Z/5\Z$ $0.882972080$ $40.27230645$ 0.857723124 \( -\frac{4096}{11} \) \( \bigl[0\) , \( -1\) , \( 1\) , \( 0\) , \( 0\bigr] \) ${y}^2+{y}={x}^{3}-{x}^{2}$
16.1-a1 16.1-a \(\Q(\sqrt{11}) \) \( 2^{4} \) $1$ $\mathsf{trivial}$ $0.235813649$ $21.93426914$ 1.559537297 \( 1024 \) \( \bigl[0\) , \( a\) , \( a + 1\) , \( 4\) , \( -3\bigr] \) ${y}^2+\left(a+1\right){y}={x}^{3}+a{x}^{2}+4{x}-3$
16.1-b1 16.1-b \(\Q(\sqrt{11}) \) \( 2^{4} \) $0$ $\mathsf{trivial}$ $-11$ $1$ $11.53162527$ 1.738457921 \( -32768 \) \( \bigl[0\) , \( -a\) , \( 0\) , \( 1\) , \( a\bigr] \) ${y}^2={x}^{3}-a{x}^{2}+{x}+a$
16.1-b2 16.1-b \(\Q(\sqrt{11}) \) \( 2^{4} \) $0$ $\mathsf{trivial}$ $-11$ $1$ $11.53162527$ 1.738457921 \( -32768 \) \( \bigl[0\) , \( a\) , \( 0\) , \( 1\) , \( -a\bigr] \) ${y}^2={x}^{3}+a{x}^{2}+{x}-a$
16.1-c1 16.1-c \(\Q(\sqrt{11}) \) \( 2^{4} \) $1$ $\mathsf{trivial}$ $0.235813649$ $21.93426914$ 1.559537297 \( 1024 \) \( \bigl[0\) , \( -a\) , \( a + 1\) , \( 4\) , \( -a - 3\bigr] \) ${y}^2+\left(a+1\right){y}={x}^{3}-a{x}^{2}+4{x}-a-3$
20.1-a1 20.1-a \(\Q(\sqrt{11}) \) \( 2^{2} \cdot 5 \) $0$ $\Z/2\Z$ $1$ $7.019918163$ 1.587438723 \( -\frac{12288}{25} a - \frac{28672}{25} \) \( \bigl[0\) , \( a + 1\) , \( 0\) , \( -12 a + 46\) , \( 82 a - 269\bigr] \) ${y}^2={x}^{3}+\left(a+1\right){x}^{2}+\left(-12a+46\right){x}+82a-269$
20.1-a2 20.1-a \(\Q(\sqrt{11}) \) \( 2^{2} \cdot 5 \) $0$ $\Z/2\Z$ $1$ $14.03983632$ 1.587438723 \( \frac{9052192}{5} a + \frac{30047888}{5} \) \( \bigl[a + 1\) , \( -1\) , \( a + 1\) , \( -3 a - 13\) , \( -8 a - 28\bigr] \) ${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}-{x}^{2}+\left(-3a-13\right){x}-8a-28$
20.1-b1 20.1-b \(\Q(\sqrt{11}) \) \( 2^{2} \cdot 5 \) $0$ $\Z/2\Z$ $1$ $24.21146987$ 1.825008208 \( -\frac{12288}{25} a - \frac{28672}{25} \) \( \bigl[0\) , \( -a - 1\) , \( 0\) , \( -12 a + 46\) , \( -82 a + 269\bigr] \) ${y}^2={x}^{3}+\left(-a-1\right){x}^{2}+\left(-12a+46\right){x}-82a+269$
20.1-b2 20.1-b \(\Q(\sqrt{11}) \) \( 2^{2} \cdot 5 \) $0$ $\Z/2\Z$ $1$ $48.42293974$ 1.825008208 \( \frac{9052192}{5} a + \frac{30047888}{5} \) \( \bigl[a + 1\) , \( -a + 1\) , \( a + 1\) , \( -5 a - 9\) , \( a + 8\bigr] \) ${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(-5a-9\right){x}+a+8$
20.2-a1 20.2-a \(\Q(\sqrt{11}) \) \( 2^{2} \cdot 5 \) $0$ $\Z/2\Z$ $1$ $7.019918163$ 1.587438723 \( \frac{12288}{25} a - \frac{28672}{25} \) \( \bigl[0\) , \( -a + 1\) , \( 0\) , \( 12 a + 46\) , \( -82 a - 269\bigr] \) ${y}^2={x}^{3}+\left(-a+1\right){x}^{2}+\left(12a+46\right){x}-82a-269$
20.2-a2 20.2-a \(\Q(\sqrt{11}) \) \( 2^{2} \cdot 5 \) $0$ $\Z/2\Z$ $1$ $14.03983632$ 1.587438723 \( -\frac{9052192}{5} a + \frac{30047888}{5} \) \( \bigl[a + 1\) , \( -a - 1\) , \( a + 1\) , \( a - 13\) , \( 7 a - 28\bigr] \) ${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(a-13\right){x}+7a-28$
20.2-b1 20.2-b \(\Q(\sqrt{11}) \) \( 2^{2} \cdot 5 \) $0$ $\Z/2\Z$ $1$ $24.21146987$ 1.825008208 \( \frac{12288}{25} a - \frac{28672}{25} \) \( \bigl[0\) , \( a - 1\) , \( 0\) , \( 12 a + 46\) , \( 82 a + 269\bigr] \) ${y}^2={x}^{3}+\left(a-1\right){x}^{2}+\left(12a+46\right){x}+82a+269$
20.2-b2 20.2-b \(\Q(\sqrt{11}) \) \( 2^{2} \cdot 5 \) $0$ $\Z/2\Z$ $1$ $48.42293974$ 1.825008208 \( -\frac{9052192}{5} a + \frac{30047888}{5} \) \( \bigl[a + 1\) , \( 1\) , \( a + 1\) , \( 3 a - 9\) , \( -2 a + 8\bigr] \) ${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+{x}^{2}+\left(3a-9\right){x}-2a+8$
25.1-a1 25.1-a \(\Q(\sqrt{11}) \) \( 5^{2} \) $0$ $\Z/2\Z$ $1$ $20.40849255$ 1.538348007 \( -\frac{1889792}{25} a + \frac{6312128}{25} \) \( \bigl[a + 1\) , \( 0\) , \( a\) , \( -2 a - 10\) , \( -4 a - 16\bigr] \) ${y}^2+\left(a+1\right){x}{y}+a{y}={x}^{3}+\left(-2a-10\right){x}-4a-16$
25.1-a2 25.1-a \(\Q(\sqrt{11}) \) \( 5^{2} \) $0$ $\Z/2\Z$ $1$ $20.40849255$ 1.538348007 \( -\frac{161632821248}{15625} a + \frac{536216861888}{15625} \) \( \bigl[a + 1\) , \( -a\) , \( a\) , \( 126 a - 425\) , \( -1231 a + 4080\bigr] \) ${y}^2+\left(a+1\right){x}{y}+a{y}={x}^{3}-a{x}^{2}+\left(126a-425\right){x}-1231a+4080$
25.1-a3 25.1-a \(\Q(\sqrt{11}) \) \( 5^{2} \) $0$ $\Z/2\Z$ $1$ $20.40849255$ 1.538348007 \( \frac{1889792}{25} a + \frac{6312128}{25} \) \( \bigl[a + 1\) , \( -a\) , \( a\) , \( a - 10\) , \( 4 a - 16\bigr] \) ${y}^2+\left(a+1\right){x}{y}+a{y}={x}^{3}-a{x}^{2}+\left(a-10\right){x}+4a-16$
25.1-a4 25.1-a \(\Q(\sqrt{11}) \) \( 5^{2} \) $0$ $\Z/2\Z$ $1$ $20.40849255$ 1.538348007 \( \frac{161632821248}{15625} a + \frac{536216861888}{15625} \) \( \bigl[a + 1\) , \( 0\) , \( a\) , \( -127 a - 425\) , \( 1231 a + 4080\bigr] \) ${y}^2+\left(a+1\right){x}{y}+a{y}={x}^{3}+\left(-127a-425\right){x}+1231a+4080$
25.1-b1 25.1-b \(\Q(\sqrt{11}) \) \( 5^{2} \) $0$ $\Z/6\Z$ $1$ $44.54190593$ 0.373052498 \( -\frac{1889792}{25} a + \frac{6312128}{25} \) \( \bigl[a + 1\) , \( -a\) , \( 1\) , \( -4 a - 5\) , \( -a\bigr] \) ${y}^2+\left(a+1\right){x}{y}+{y}={x}^{3}-a{x}^{2}+\left(-4a-5\right){x}-a$
25.1-b2 25.1-b \(\Q(\sqrt{11}) \) \( 5^{2} \) $0$ $\Z/2\Z$ $1$ $4.949100658$ 0.373052498 \( -\frac{161632821248}{15625} a + \frac{536216861888}{15625} \) \( \bigl[a + 1\) , \( 0\) , \( 1\) , \( 128 a - 420\) , \( 1486 a - 4926\bigr] \) ${y}^2+\left(a+1\right){x}{y}+{y}={x}^{3}+\left(128a-420\right){x}+1486a-4926$
25.1-b3 25.1-b \(\Q(\sqrt{11}) \) \( 5^{2} \) $0$ $\Z/6\Z$ $1$ $44.54190593$ 0.373052498 \( \frac{1889792}{25} a + \frac{6312128}{25} \) \( \bigl[a + 1\) , \( 0\) , \( 1\) , \( 3 a - 5\) , \( a\bigr] \) ${y}^2+\left(a+1\right){x}{y}+{y}={x}^{3}+\left(3a-5\right){x}+a$
25.1-b4 25.1-b \(\Q(\sqrt{11}) \) \( 5^{2} \) $0$ $\Z/2\Z$ $1$ $4.949100658$ 0.373052498 \( \frac{161632821248}{15625} a + \frac{536216861888}{15625} \) \( \bigl[a + 1\) , \( -a\) , \( 1\) , \( -129 a - 420\) , \( -1486 a - 4926\bigr] \) ${y}^2+\left(a+1\right){x}{y}+{y}={x}^{3}-a{x}^{2}+\left(-129a-420\right){x}-1486a-4926$
25.2-a1 25.2-a \(\Q(\sqrt{11}) \) \( 5^{2} \) $0$ $\mathsf{trivial}$ $-11$ $1$ $10.31419920$ 1.554924035 \( -32768 \) \( \bigl[0\) , \( -a - 1\) , \( 1\) , \( 6 a - 14\) , \( -9 a + 27\bigr] \) ${y}^2+{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(6a-14\right){x}-9a+27$
25.2-a2 25.2-a \(\Q(\sqrt{11}) \) \( 5^{2} \) $0$ $\mathsf{trivial}$ $-11$ $1$ $10.31419920$ 1.554924035 \( -32768 \) \( \bigl[0\) , \( a + 1\) , \( a\) , \( 6 a - 14\) , \( 9 a - 30\bigr] \) ${y}^2+a{y}={x}^{3}+\left(a+1\right){x}^{2}+\left(6a-14\right){x}+9a-30$
25.2-b1 25.2-b \(\Q(\sqrt{11}) \) \( 5^{2} \) $1$ $\Z/2\Z$ $-4$ $1.282876014$ $8.224640586$ 1.590652365 \( 1728 \) \( \bigl[a + 1\) , \( a\) , \( a\) , \( 2 a + 9\) , \( 4 a + 7\bigr] \) ${y}^2+\left(a+1\right){x}{y}+a{y}={x}^{3}+a{x}^{2}+\left(2a+9\right){x}+4a+7$
25.2-b2 25.2-b \(\Q(\sqrt{11}) \) \( 5^{2} \) $1$ $\Z/2\Z$ $-4$ $0.641438007$ $16.44928117$ 1.590652365 \( 1728 \) \( \bigl[a + 1\) , \( a\) , \( 1\) , \( -93 a - 306\) , \( -251 a - 833\bigr] \) ${y}^2+\left(a+1\right){x}{y}+{y}={x}^{3}+a{x}^{2}+\left(-93a-306\right){x}-251a-833$
25.3-a1 25.3-a \(\Q(\sqrt{11}) \) \( 5^{2} \) $0$ $\mathsf{trivial}$ $-11$ $1$ $10.31419920$ 1.554924035 \( -32768 \) \( \bigl[0\) , \( a - 1\) , \( 1\) , \( -6 a - 14\) , \( 9 a + 27\bigr] \) ${y}^2+{y}={x}^{3}+\left(a-1\right){x}^{2}+\left(-6a-14\right){x}+9a+27$
25.3-a2 25.3-a \(\Q(\sqrt{11}) \) \( 5^{2} \) $0$ $\mathsf{trivial}$ $-11$ $1$ $10.31419920$ 1.554924035 \( -32768 \) \( \bigl[0\) , \( -a + 1\) , \( a\) , \( -6 a - 14\) , \( -9 a - 30\bigr] \) ${y}^2+a{y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(-6a-14\right){x}-9a-30$
25.3-b1 25.3-b \(\Q(\sqrt{11}) \) \( 5^{2} \) $1$ $\Z/2\Z$ $-4$ $0.641438007$ $16.44928117$ 1.590652365 \( 1728 \) \( \bigl[a + 1\) , \( a\) , \( a\) , \( 98 a - 311\) , \( -60 a + 215\bigr] \) ${y}^2+\left(a+1\right){x}{y}+a{y}={x}^{3}+a{x}^{2}+\left(98a-311\right){x}-60a+215$
25.3-b2 25.3-b \(\Q(\sqrt{11}) \) \( 5^{2} \) $1$ $\Z/2\Z$ $-4$ $1.282876014$ $8.224640586$ 1.590652365 \( 1728 \) \( \bigl[a + 1\) , \( a\) , \( 1\) , \( 3 a + 14\) , \( 5 a + 15\bigr] \) ${y}^2+\left(a+1\right){x}{y}+{y}={x}^{3}+a{x}^{2}+\left(3a+14\right){x}+5a+15$
Next   Download to        

  *The rank, regulator and analytic order of Ш are not known for all curves in the database; curves for which these are unknown will not appear in searches specifying one of these quantities.