Base field \(\Q(\sqrt{10}) \)
Generator \(a\), with minimal polynomial \( x^{2} - 10 \); class number \(2\).
Weierstrass equation
This is not a global minimal model: it is minimal at all primes except \((2,a)\). No global minimal model exists.
Mordell-Weil group structure
\(\Z \oplus \Z/{4}\Z\)
Mordell-Weil generators
| $P$ | $\hat{h}(P)$ | Order |
|---|---|---|
| $\left(\frac{11}{2} : \frac{11}{4} a : 1\right)$ | $2.2975083151850105713585524298595695489$ | $\infty$ |
| $\left(1 : -4 : 1\right)$ | $0$ | $4$ |
Invariants
| Conductor: | $\frak{N}$ | = | \((24,12a)\) | = | \((2,a)^{5}\cdot(3,a+1)\cdot(3,a+2)\) |
|
| |||||
| Conductor norm: | $N(\frak{N})$ | = | \( 288 \) | = | \(2^{5}\cdot3\cdot3\) |
|
| |||||
| Discriminant: | $\Delta$ | = | $12288$ | ||
| Discriminant ideal: | $(\Delta)$ | = | \((12288)\) | = | \((2,a)^{24}\cdot(3,a+1)\cdot(3,a+2)\) |
|
| |||||
| Discriminant norm: | $N(\Delta)$ | = | \( 150994944 \) | = | \(2^{24}\cdot3\cdot3\) |
|
| |||||
| Minimal discriminant: | $\frak{D}_{\mathrm{min}}$ | = | \((192)\) | = | \((2,a)^{12}\cdot(3,a+1)\cdot(3,a+2)\) |
| Minimal discriminant norm: | $N(\frak{D}_{\mathrm{min}})$ | = | \( 36864 \) | = | \(2^{12}\cdot3\cdot3\) |
| j-invariant: | $j$ | = | \( \frac{140608}{3} \) | ||
|
| |||||
| Endomorphism ring: | $\mathrm{End}(E)$ | = | \(\Z\) | ||
| Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) | ||
|
| |||||
| Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | ||
BSD invariants
| Analytic rank: | $r_{\mathrm{an}}$ | = | \( 1 \) |
|
|
|||
| Mordell-Weil rank: | $r$ | = | \(1\) |
| Regulator: | $\mathrm{Reg}(E/K)$ | ≈ | \( 2.2975083151850105713585524298595695489 \) |
| Néron-Tate Regulator: | $\mathrm{Reg}_{\mathrm{NT}}(E/K)$ | ≈ | \( 4.5950166303700211427171048597191390978 \) |
| Global period: | $\Omega(E/K)$ | ≈ | \( 32.068989493147509498899426516761036312 \) |
| Tamagawa product: | $\prod_{\frak{p}}c_{\frak{p}}$ | = | \( 2 \) = \(2\cdot1\cdot1\) |
| Torsion order: | $\#E(K)_{\mathrm{tor}}$ | = | \(4\) |
| Special value: | $L^{(r)}(E/K,1)/r!$ | ≈ | \( 2.9124091057900662281802185792557342510 \) |
| Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | = | \( 1 \) (rounded) |
BSD formula
$$\begin{aligned}2.912409106 \approx L'(E/K,1) & \overset{?}{=} \frac{ \# ะจ(E/K) \cdot \Omega(E/K) \cdot \mathrm{Reg}_{\mathrm{NT}}(E/K) \cdot \prod_{\mathfrak{p}} c_{\mathfrak{p}} } { \#E(K)_{\mathrm{tor}}^2 \cdot \left|d_K\right|^{1/2} } \\ & \approx \frac{ 1 \cdot 32.068989 \cdot 4.595017 \cdot 2 } { {4^2 \cdot 6.324555} } \\ & \approx 2.912409106 \end{aligned}$$
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 3 primes $\frak{p}$ of bad reduction. Primes of good reduction for the curve but which divide the discriminant of the model above (if any) are included.
| $\mathfrak{p}$ | $N(\mathfrak{p})$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | \(\mathrm{ord}_{\mathfrak{p}}(\mathfrak{N}\)) | \(\mathrm{ord}_{\mathfrak{p}}(\mathfrak{D}_{\mathrm{min}}\)) | \(\mathrm{ord}_{\mathfrak{p}}(\mathrm{den}(j))\) |
|---|---|---|---|---|---|---|---|---|
| \((2,a)\) | \(2\) | \(2\) | \(III^{*}\) | Additive | \(-1\) | \(5\) | \(12\) | \(0\) |
| \((3,a+1)\) | \(3\) | \(1\) | \(I_{1}\) | Non-split multiplicative | \(1\) | \(1\) | \(1\) | \(1\) |
| \((3,a+2)\) | \(3\) | \(1\) | \(I_{1}\) | Non-split multiplicative | \(1\) | \(1\) | \(1\) | \(1\) |
Galois Representations
The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.
| prime | Image of Galois Representation |
|---|---|
| \(2\) | 2B |
Isogenies and isogeny class
This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\)
2 and 4.
Its isogeny class
288.1-q
consists of curves linked by isogenies of
degrees dividing 4.
Base change
This elliptic curve is a \(\Q\)-curve. It is the base change of the following 2 elliptic curves:
| Base field | Curve |
|---|---|
| \(\Q\) | 96.a2 |
| \(\Q\) | 4800.f3 |