Properties

Label 2.2.40.1-288.1-q3
Base field \(\Q(\sqrt{10}) \)
Conductor norm \( 288 \)
CM no
Base change yes
Q-curve yes
Torsion order \( 4 \)
Rank \( 1 \)

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Base field \(\Q(\sqrt{10}) \)

Generator \(a\), with minimal polynomial \( x^{2} - 10 \); class number \(2\).

Copy content comment:Define the base number field
 
Copy content sage:R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([-10, 0, 1]))
 
Copy content gp:K = nfinit(Polrev([-10, 0, 1]));
 
Copy content magma:R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-10, 0, 1]);
 

Weierstrass equation

\({y}^2={x}^{3}-{x}^{2}-17{x}+33\)
Copy content comment:Define the curve
 
Copy content sage:E = EllipticCurve([K([0,0]),K([-1,0]),K([0,0]),K([-17,0]),K([33,0])])
 
Copy content gp:E = ellinit([Polrev([0,0]),Polrev([-1,0]),Polrev([0,0]),Polrev([-17,0]),Polrev([33,0])], K);
 
Copy content magma:E := EllipticCurve([K![0,0],K![-1,0],K![0,0],K![-17,0],K![33,0]]);
 

This is not a global minimal model: it is minimal at all primes except \((2,a)\). No global minimal model exists.

Copy content comment:Test whether it is a global minimal model
 
Copy content sage:E.is_global_minimal_model()
 

Mordell-Weil group structure

\(\Z \oplus \Z/{4}\Z\)

Mordell-Weil generators

$P$$\hat{h}(P)$Order
$\left(\frac{11}{2} : \frac{11}{4} a : 1\right)$$2.2975083151850105713585524298595695489$$\infty$
$\left(1 : -4 : 1\right)$$0$$4$

Invariants

Conductor: $\frak{N}$ = \((24,12a)\) = \((2,a)^{5}\cdot(3,a+1)\cdot(3,a+2)\)
Copy content comment:Compute the conductor
 
Copy content sage:E.conductor()
 
Copy content gp:ellglobalred(E)[1]
 
Copy content magma:Conductor(E);
 
Conductor norm: $N(\frak{N})$ = \( 288 \) = \(2^{5}\cdot3\cdot3\)
Copy content comment:Compute the norm of the conductor
 
Copy content sage:E.conductor().norm()
 
Copy content gp:idealnorm(K, ellglobalred(E)[1])
 
Copy content magma:Norm(Conductor(E));
 
Discriminant: $\Delta$ = $12288$
Discriminant ideal: $(\Delta)$ = \((12288)\) = \((2,a)^{24}\cdot(3,a+1)\cdot(3,a+2)\)
Copy content comment:Compute the discriminant
 
Copy content sage:E.discriminant()
 
Copy content gp:E.disc
 
Copy content magma:Discriminant(E);
 
Discriminant norm: $N(\Delta)$ = \( 150994944 \) = \(2^{24}\cdot3\cdot3\)
Copy content comment:Compute the norm of the discriminant
 
Copy content sage:E.discriminant().norm()
 
Copy content gp:norm(E.disc)
 
Copy content magma:Norm(Discriminant(E));
 
Minimal discriminant: $\frak{D}_{\mathrm{min}}$ = \((192)\) = \((2,a)^{12}\cdot(3,a+1)\cdot(3,a+2)\)
Minimal discriminant norm: $N(\frak{D}_{\mathrm{min}})$ = \( 36864 \) = \(2^{12}\cdot3\cdot3\)
j-invariant: $j$ = \( \frac{140608}{3} \)
Copy content comment:Compute the j-invariant
 
Copy content sage:E.j_invariant()
 
Copy content gp:E.j
 
Copy content magma:jInvariant(E);
 
Endomorphism ring: $\mathrm{End}(E)$ = \(\Z\)   
Geometric endomorphism ring: $\mathrm{End}(E_{\overline{\Q}})$ = \(\Z\)    (no potential complex multiplication)
Copy content comment:Test for Complex Multiplication
 
Copy content sage:E.has_cm(), E.cm_discriminant()
 
Copy content magma:HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{ST}(E)$ = $\mathrm{SU}(2)$

BSD invariants

Analytic rank: $r_{\mathrm{an}}$= \( 1 \)
Copy content comment:Compute the Mordell-Weil rank
 
Copy content sage:E.rank()
 
Copy content magma:Rank(E);
 
Mordell-Weil rank: $r$ = \(1\)
Regulator: $\mathrm{Reg}(E/K)$ \( 2.2975083151850105713585524298595695489 \)
Néron-Tate Regulator: $\mathrm{Reg}_{\mathrm{NT}}(E/K)$ \( 4.5950166303700211427171048597191390978 \)
Global period: $\Omega(E/K)$ \( 32.068989493147509498899426516761036312 \)
Tamagawa product: $\prod_{\frak{p}}c_{\frak{p}}$= \( 2 \)  =  \(2\cdot1\cdot1\)
Torsion order: $\#E(K)_{\mathrm{tor}}$= \(4\)
Special value: $L^{(r)}(E/K,1)/r!$ \( 2.9124091057900662281802185792557342510 \)
Analytic order of Ш: Ш${}_{\mathrm{an}}$= \( 1 \) (rounded)

BSD formula

$$\begin{aligned}2.912409106 \approx L'(E/K,1) & \overset{?}{=} \frac{ \# ะจ(E/K) \cdot \Omega(E/K) \cdot \mathrm{Reg}_{\mathrm{NT}}(E/K) \cdot \prod_{\mathfrak{p}} c_{\mathfrak{p}} } { \#E(K)_{\mathrm{tor}}^2 \cdot \left|d_K\right|^{1/2} } \\ & \approx \frac{ 1 \cdot 32.068989 \cdot 4.595017 \cdot 2 } { {4^2 \cdot 6.324555} } \\ & \approx 2.912409106 \end{aligned}$$

Local data at primes of bad reduction

Copy content comment:Compute the local reduction data at primes of bad reduction
 
Copy content sage:E.local_data()
 
Copy content magma:LocalInformation(E);
 

This elliptic curve is not semistable. There are 3 primes $\frak{p}$ of bad reduction. Primes of good reduction for the curve but which divide the discriminant of the model above (if any) are included.

$\mathfrak{p}$ $N(\mathfrak{p})$ Tamagawa number Kodaira symbol Reduction type Root number \(\mathrm{ord}_{\mathfrak{p}}(\mathfrak{N}\)) \(\mathrm{ord}_{\mathfrak{p}}(\mathfrak{D}_{\mathrm{min}}\)) \(\mathrm{ord}_{\mathfrak{p}}(\mathrm{den}(j))\)
\((2,a)\) \(2\) \(2\) \(III^{*}\) Additive \(-1\) \(5\) \(12\) \(0\)
\((3,a+1)\) \(3\) \(1\) \(I_{1}\) Non-split multiplicative \(1\) \(1\) \(1\) \(1\)
\((3,a+2)\) \(3\) \(1\) \(I_{1}\) Non-split multiplicative \(1\) \(1\) \(1\) \(1\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2 and 4.
Its isogeny class 288.1-q consists of curves linked by isogenies of degrees dividing 4.

Base change

This elliptic curve is a \(\Q\)-curve. It is the base change of the following 2 elliptic curves:

Base field Curve
\(\Q\) 96.a2
\(\Q\) 4800.f3