Properties

Label 2.2.40.1-18.2-b1
Base field \(\Q(\sqrt{10}) \)
Conductor norm \( 18 \)
CM no
Base change no
Q-curve no
Torsion order \( 1 \)
Rank \( 1 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field \(\Q(\sqrt{10}) \)

Generator \(a\), with minimal polynomial \( x^{2} - 10 \); class number \(2\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([-10, 0, 1]))
 
gp: K = nfinit(Polrev([-10, 0, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-10, 0, 1]);
 

Weierstrass equation

\({y}^2+\left(a+1\right){x}{y}+a{y}={x}^{3}-{x}^{2}+\left(-4515a-14281\right){x}+288657a+912811\)
sage: E = EllipticCurve([K([1,1]),K([-1,0]),K([0,1]),K([-14281,-4515]),K([912811,288657])])
 
gp: E = ellinit([Polrev([1,1]),Polrev([-1,0]),Polrev([0,1]),Polrev([-14281,-4515]),Polrev([912811,288657])], K);
 
magma: E := EllipticCurve([K![1,1],K![-1,0],K![0,1],K![-14281,-4515],K![912811,288657]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((18,a+8)\) = \((2,a)\cdot(3,a+2)^{2}\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 18 \) = \(2\cdot3^{2}\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((24448a-108544)\) = \((2,a)^{15}\cdot(3,a+2)^{11}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 5804752896 \) = \(2^{15}\cdot3^{11}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( -\frac{14810400553709}{62208} a - \frac{11708649294791}{15552} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(1\)
Generator $\left(16 a + 51 : -48 a - 150 : 1\right)$
Height \(0.16714868475056400815434407510027208386\)
Torsion structure: trivial
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 

BSD invariants

Analytic rank: \( 1 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(1\)
Regulator: \( 0.16714868475056400815434407510027208386 \)
Period: \( 4.7092788325795081011016180663285873990 \)
Tamagawa product: \( 4 \)  =  \(1\cdot2^{2}\)
Torsion order: \(1\)
Leading coefficient: \( 0.99567444428320510111002253842512457306 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((2,a)\) \(2\) \(1\) \(I_{15}\) Non-split multiplicative \(1\) \(1\) \(15\) \(15\)
\((3,a+2)\) \(3\) \(4\) \(I_{5}^{*}\) Additive \(-1\) \(2\) \(11\) \(5\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(3\) 3B
\(5\) 5B.4.1

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 3, 5 and 15.
Its isogeny class 18.2-b consists of curves linked by isogenies of degrees dividing 15.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.