Properties

Label 2.2.40.1-135.3-b1
Base field Q(10)\Q(\sqrt{10})
Conductor norm 135 135
CM no
Base change no
Q-curve no
Torsion order 1 1
Rank 1 1

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field Q(10)\Q(\sqrt{10})

Generator aa, with minimal polynomial x210 x^{2} - 10 ; class number 22.

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([-10, 0, 1]))
 
gp: K = nfinit(Polrev([-10, 0, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-10, 0, 1]);
 

Weierstrass equation

y2+axy+ay=x3ax2+(4a3)x+5a+18{y}^2+a{x}{y}+a{y}={x}^{3}-a{x}^{2}+\left(4a-3\right){x}+5a+18
sage: E = EllipticCurve([K([0,1]),K([0,-1]),K([0,1]),K([-3,4]),K([18,5])])
 
gp: E = ellinit([Polrev([0,1]),Polrev([0,-1]),Polrev([0,1]),Polrev([-3,4]),Polrev([18,5])], K);
 
magma: E := EllipticCurve([K![0,1],K![0,-1],K![0,1],K![-3,4],K![18,5]]);
 

This is not a global minimal model: it is minimal at all primes except (2,a)(2,a). No global minimal model exists.

sage: E.is_global_minimal_model()
 

Mordell-Weil group structure

Z\Z

Mordell-Weil generators

PPh^(P)\hat{h}(P)Order
(1:4:1)\left(1 : 4 : 1\right)0.514363681307897350420717755966771157100.51436368130789735042071775596677115710\infty

Invariants

Conductor: N\frak{N} = (4a5)(-4a-5) = (3,a+2)3(5,a)(3,a+2)^{3}\cdot(5,a)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: N(N)N(\frak{N}) = 135 135 = 3353^{3}\cdot5
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: Δ\Delta = 32000a40000-32000a-40000
Discriminant ideal: (Δ)(\Delta) = (32000a40000)(-32000a-40000) = (2,a)12(3,a+2)3(5,a)7(2,a)^{12}\cdot(3,a+2)^{3}\cdot(5,a)^{7}
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: N(Δ)N(\Delta) = 8640000000 8640000000 = 21233572^{12}\cdot3^{3}\cdot5^{7}
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
Minimal discriminant: Dmin\frak{D}_{\mathrm{min}} = (500a625)(-500a-625) = (3,a+2)3(5,a)7(3,a+2)^{3}\cdot(5,a)^{7}
Minimal discriminant norm: N(Dmin)N(\frak{D}_{\mathrm{min}}) = 2109375 2109375 = 33573^{3}\cdot5^{7}
j-invariant: jj = 10728071625a6736561125 \frac{10728071}{625} a - \frac{6736561}{125}
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: End(E)\mathrm{End}(E) = Z\Z   
Geometric endomorphism ring: End(EQ)\mathrm{End}(E_{\overline{\Q}}) = Z\Z    (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: ST(E)\mathrm{ST}(E) = SU(2)\mathrm{SU}(2)

BSD invariants

Analytic rank: ranr_{\mathrm{an}}= 1 1
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: rr = 11
Regulator: Reg(E/K)\mathrm{Reg}(E/K) 0.51436368130789735042071775596677115710 0.51436368130789735042071775596677115710
Néron-Tate Regulator: RegNT(E/K)\mathrm{Reg}_{\mathrm{NT}}(E/K) 1.02872736261579470084143551193354231420 1.02872736261579470084143551193354231420
Global period: Ω(E/K)\Omega(E/K) 16.113616945928583209617692822213419640 16.113616945928583209617692822213419640
Tamagawa product: pcp\prod_{\frak{p}}c_{\frak{p}}= 1 1  =  1111\cdot1\cdot1
Torsion order: #E(K)tor\#E(K)_{\mathrm{tor}}= 11
Special value: L(r)(E/K,1)/r!L^{(r)}(E/K,1)/r! 2.6209777325662875240266073791396135238 2.6209777325662875240266073791396135238
Analytic order of Ш: Шan{}_{\mathrm{an}}= 1 1 (rounded)

BSD formula

2.620977733L(E/K,1)=?#Ш(E/K)Ω(E/K)RegNT(E/K)pcp#E(K)tor2dK1/2116.1136171.0287271126.3245552.620977733\displaystyle 2.620977733 \approx L'(E/K,1) \overset{?}{=} \frac{ \# Ш(E/K) \cdot \Omega(E/K) \cdot \mathrm{Reg}_{\mathrm{NT}}(E/K) \cdot \prod_{\mathfrak{p}} c_{\mathfrak{p}} } { \#E(K)_{\mathrm{tor}}^2 \cdot \left|d_K\right|^{1/2} } \approx \frac{ 1 \cdot 16.113617 \cdot 1.028727 \cdot 1 } { {1^2 \cdot 6.324555} } \approx 2.620977733

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 

This elliptic curve is not semistable. There are 2 primes p\frak{p} of bad reduction. Primes of good reduction for the curve but which divide the discriminant of the model above (if any) are included.

p\mathfrak{p} N(p)N(\mathfrak{p}) Tamagawa number Kodaira symbol Reduction type Root number ordp(N\mathrm{ord}_{\mathfrak{p}}(\mathfrak{N}) ordp(Dmin\mathrm{ord}_{\mathfrak{p}}(\mathfrak{D}_{\mathrm{min}}) ordp(den(j))\mathrm{ord}_{\mathfrak{p}}(\mathrm{den}(j))
(2,a)(2,a) 22 11 I0I_0 Good 11 00 00 00
(3,a+2)(3,a+2) 33 11 IIII Additive 1-1 33 33 00
(5,a)(5,a) 55 11 I7I_{7} Non-split multiplicative 11 11 77 77

Galois Representations

The mod p p Galois Representation has maximal image for all primes p<1000 p < 1000 .

Isogenies and isogeny class

This curve has no rational isogenies. Its isogeny class 135.3-b consists of this curve only.

Base change

This elliptic curve is not a Q\Q-curve.

It is not the base change of an elliptic curve defined over any subfield.