Base field \(\Q(\sqrt{33}) \)
Generator \(a\), with minimal polynomial \( x^{2} - x - 8 \); class number \(1\).
Weierstrass equation
This is a global minimal model.
Mordell-Weil group structure
\(\Z \oplus \Z/{2}\Z\)
Mordell-Weil generators
$P$ | $\hat{h}(P)$ | Order |
---|---|---|
$\left(29 a + 68 : 255 a + 606 : 1\right)$ | $1.0576173945468222970628435524208356918$ | $\infty$ |
$\left(21 a + 49 : -11 a - 25 : 1\right)$ | $0$ | $2$ |
Invariants
Conductor: | $\frak{N}$ | = | \((-28a+98)\) | = | \((-a-2)\cdot(-a+3)\cdot(-2a+7)\cdot(7)\) |
| |||||
Conductor norm: | $N(\frak{N})$ | = | \( 588 \) | = | \(2\cdot2\cdot3\cdot49\) |
| |||||
Discriminant: | $\Delta$ | = | $-16128$ | ||
Discriminant ideal: | $\frak{D}_{\mathrm{min}} = (\Delta)$ | = | \((-16128)\) | = | \((-a-2)^{8}\cdot(-a+3)^{8}\cdot(-2a+7)^{4}\cdot(7)\) |
| |||||
Discriminant norm: | $N(\frak{D}_{\mathrm{min}}) = N(\Delta)$ | = | \( 260112384 \) | = | \(2^{8}\cdot2^{8}\cdot3^{4}\cdot49\) |
| |||||
j-invariant: | $j$ | = | \( -\frac{7189057}{16128} \) | ||
| |||||
Endomorphism ring: | $\mathrm{End}(E)$ | = | \(\Z\) | ||
Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) | ||
| |||||
Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ |
BSD invariants
Analytic rank: | $r_{\mathrm{an}}$ | = | \( 1 \) |
|
|||
Mordell-Weil rank: | $r$ | = | \(1\) |
Regulator: | $\mathrm{Reg}(E/K)$ | ≈ | \( 1.0576173945468222970628435524208356918 \) |
Néron-Tate Regulator: | $\mathrm{Reg}_{\mathrm{NT}}(E/K)$ | ≈ | \( 2.1152347890936445941256871048416713836 \) |
Global period: | $\Omega(E/K)$ | ≈ | \( 2.4868872765896753813228282147412861493 \) |
Tamagawa product: | $\prod_{\frak{p}}c_{\frak{p}}$ | = | \( 8 \) = \(2\cdot2\cdot2\cdot1\) |
Torsion order: | $\#E(K)_{\mathrm{tor}}$ | = | \(2\) |
Special value: | $L^{(r)}(E/K,1)/r!$ | ≈ | \( 1.8314189635191776265851007244392880511 \) |
Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | = | \( 1 \) (rounded) |
BSD formula
$$\begin{aligned}1.831418964 \approx L'(E/K,1) & \overset{?}{=} \frac{ \# ะจ(E/K) \cdot \Omega(E/K) \cdot \mathrm{Reg}_{\mathrm{NT}}(E/K) \cdot \prod_{\mathfrak{p}} c_{\mathfrak{p}} } { \#E(K)_{\mathrm{tor}}^2 \cdot \left|d_K\right|^{1/2} } \\ & \approx \frac{ 1 \cdot 2.486887 \cdot 2.115235 \cdot 8 } { {2^2 \cdot 5.744563} } \\ & \approx 1.831418964 \end{aligned}$$
Local data at primes of bad reduction
This elliptic curve is semistable. There are 4 primes $\frak{p}$ of bad reduction.
$\mathfrak{p}$ | $N(\mathfrak{p})$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | \(\mathrm{ord}_{\mathfrak{p}}(\mathfrak{N}\)) | \(\mathrm{ord}_{\mathfrak{p}}(\mathfrak{D}_{\mathrm{min}}\)) | \(\mathrm{ord}_{\mathfrak{p}}(\mathrm{den}(j))\) |
---|---|---|---|---|---|---|---|---|
\((-a-2)\) | \(2\) | \(2\) | \(I_{8}\) | Non-split multiplicative | \(1\) | \(1\) | \(8\) | \(8\) |
\((-a+3)\) | \(2\) | \(2\) | \(I_{8}\) | Non-split multiplicative | \(1\) | \(1\) | \(8\) | \(8\) |
\((-2a+7)\) | \(3\) | \(2\) | \(I_{4}\) | Non-split multiplicative | \(1\) | \(1\) | \(4\) | \(4\) |
\((7)\) | \(49\) | \(1\) | \(I_{1}\) | Split multiplicative | \(-1\) | \(1\) | \(1\) | \(1\) |
Galois Representations
The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.
prime | Image of Galois Representation |
---|---|
\(2\) | 2B |
Isogenies and isogeny class
This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\)
2, 4 and 8.
Its isogeny class
588.1-j
consists of curves linked by isogenies of
degrees dividing 8.
Base change
This elliptic curve is a \(\Q\)-curve. It is the base change of the following 2 elliptic curves:
Base field | Curve |
---|---|
\(\Q\) | 126.a5 |
\(\Q\) | 5082.d5 |