Label |
Class |
Class size |
Class degree |
Base field |
Field degree |
Field signature |
Conductor |
Conductor norm |
Discriminant norm |
Root analytic conductor |
Bad primes |
Rank |
Torsion |
CM |
CM |
Sato-Tate |
$\Q$-curve |
Base change |
Semistable |
Potentially good |
Nonmax $\ell$ |
mod-$\ell$ images |
$Ш_{\textrm{an}}$ |
Tamagawa |
Regulator |
Period |
Leading coeff |
j-invariant |
Weierstrass coefficients |
Weierstrass equation |
1.1-a1 |
1.1-a |
$6$ |
$99$ |
\(\Q(\sqrt{33}) \) |
$2$ |
$[2, 0]$ |
1.1 |
\( 1 \) |
\( 1 \) |
$0.51333$ |
$\textsf{none}$ |
0 |
$\mathsf{trivial}$ |
$\textsf{potential}$ |
$-99$ |
$N(\mathrm{U}(1))$ |
✓ |
|
✓ |
✓ |
$3$ |
3B.1.2 |
$1$ |
\( 1 \) |
$1$ |
$2.562583394$ |
0.446088510 |
\( -6548115718144 a - 15533972619264 \) |
\( \bigl[0\) , \( -a\) , \( 1\) , \( -435 a - 1030\) , \( -7890 a - 18717\bigr] \) |
${y}^2+{y}={x}^{3}-a{x}^{2}+\left(-435a-1030\right){x}-7890a-18717$ |
1.1-a2 |
1.1-a |
$6$ |
$99$ |
\(\Q(\sqrt{33}) \) |
$2$ |
$[2, 0]$ |
1.1 |
\( 1 \) |
\( 1 \) |
$0.51333$ |
$\textsf{none}$ |
0 |
$\Z/3\Z$ |
$\textsf{potential}$ |
$-99$ |
$N(\mathrm{U}(1))$ |
✓ |
|
✓ |
✓ |
$3$ |
3B.1.1 |
$1$ |
\( 1 \) |
$1$ |
$23.06325055$ |
0.446088510 |
\( -6548115718144 a - 15533972619264 \) |
\( \bigl[0\) , \( a - 1\) , \( 1\) , \( -25 a + 85\) , \( 72 a - 243\bigr] \) |
${y}^2+{y}={x}^{3}+\left(a-1\right){x}^{2}+\left(-25a+85\right){x}+72a-243$ |
1.1-a3 |
1.1-a |
$6$ |
$99$ |
\(\Q(\sqrt{33}) \) |
$2$ |
$[2, 0]$ |
1.1 |
\( 1 \) |
\( 1 \) |
$0.51333$ |
$\textsf{none}$ |
0 |
$\Z/3\Z$ |
$\textsf{potential}$ |
$-11$ |
$N(\mathrm{U}(1))$ |
✓ |
|
✓ |
✓ |
$3$ |
3Cs.1.1 |
$1$ |
\( 1 \) |
$1$ |
$23.06325055$ |
0.446088510 |
\( -32768 \) |
\( \bigl[0\) , \( a - 1\) , \( 1\) , \( 5 a - 15\) , \( 6 a - 20\bigr] \) |
${y}^2+{y}={x}^{3}+\left(a-1\right){x}^{2}+\left(5a-15\right){x}+6a-20$ |
1.1-a4 |
1.1-a |
$6$ |
$99$ |
\(\Q(\sqrt{33}) \) |
$2$ |
$[2, 0]$ |
1.1 |
\( 1 \) |
\( 1 \) |
$0.51333$ |
$\textsf{none}$ |
0 |
$\Z/3\Z$ |
$\textsf{potential}$ |
$-11$ |
$N(\mathrm{U}(1))$ |
✓ |
|
✓ |
✓ |
$3$ |
3Cs.1.1 |
$1$ |
\( 1 \) |
$1$ |
$23.06325055$ |
0.446088510 |
\( -32768 \) |
\( \bigl[0\) , \( -a\) , \( 1\) , \( -5 a - 10\) , \( -6 a - 14\bigr] \) |
${y}^2+{y}={x}^{3}-a{x}^{2}+\left(-5a-10\right){x}-6a-14$ |
1.1-a5 |
1.1-a |
$6$ |
$99$ |
\(\Q(\sqrt{33}) \) |
$2$ |
$[2, 0]$ |
1.1 |
\( 1 \) |
\( 1 \) |
$0.51333$ |
$\textsf{none}$ |
0 |
$\mathsf{trivial}$ |
$\textsf{potential}$ |
$-99$ |
$N(\mathrm{U}(1))$ |
✓ |
|
✓ |
✓ |
$3$ |
3B.1.2 |
$1$ |
\( 1 \) |
$1$ |
$2.562583394$ |
0.446088510 |
\( 6548115718144 a - 22082088337408 \) |
\( \bigl[0\) , \( a - 1\) , \( 1\) , \( 435 a - 1465\) , \( 7890 a - 26607\bigr] \) |
${y}^2+{y}={x}^{3}+\left(a-1\right){x}^{2}+\left(435a-1465\right){x}+7890a-26607$ |
1.1-a6 |
1.1-a |
$6$ |
$99$ |
\(\Q(\sqrt{33}) \) |
$2$ |
$[2, 0]$ |
1.1 |
\( 1 \) |
\( 1 \) |
$0.51333$ |
$\textsf{none}$ |
0 |
$\Z/3\Z$ |
$\textsf{potential}$ |
$-99$ |
$N(\mathrm{U}(1))$ |
✓ |
|
✓ |
✓ |
$3$ |
3B.1.1 |
$1$ |
\( 1 \) |
$1$ |
$23.06325055$ |
0.446088510 |
\( 6548115718144 a - 22082088337408 \) |
\( \bigl[0\) , \( -a\) , \( 1\) , \( 25 a + 60\) , \( -72 a - 171\bigr] \) |
${y}^2+{y}={x}^{3}-a{x}^{2}+\left(25a+60\right){x}-72a-171$ |
4.1-a1 |
4.1-a |
$6$ |
$18$ |
\(\Q(\sqrt{33}) \) |
$2$ |
$[2, 0]$ |
4.1 |
\( 2^{2} \) |
\( - 2^{3} \) |
$0.72596$ |
$(-a-2), (-a+3)$ |
0 |
$\Z/6\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
✓ |
|
$2, 3$ |
2B, 3B.1.1 |
$1$ |
\( 2 \) |
$1$ |
$34.81892277$ |
0.336733136 |
\( -\frac{10838595115443}{4} a + \frac{36550776099881}{4} \) |
\( \bigl[1\) , \( 0\) , \( 1\) , \( -746 a - 1771\) , \( 18744 a + 44466\bigr] \) |
${y}^2+{x}{y}+{y}={x}^{3}+\left(-746a-1771\right){x}+18744a+44466$ |
4.1-a2 |
4.1-a |
$6$ |
$18$ |
\(\Q(\sqrt{33}) \) |
$2$ |
$[2, 0]$ |
4.1 |
\( 2^{2} \) |
\( - 2^{27} \) |
$0.72596$ |
$(-a-2), (-a+3)$ |
0 |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
✓ |
|
$2, 3$ |
2B, 3B.1.2 |
$1$ |
\( 2 \) |
$1$ |
$3.868769197$ |
0.336733136 |
\( -\frac{5519537297}{262144} a + \frac{18610505433}{262144} \) |
\( \bigl[1\) , \( 0\) , \( 1\) , \( -36 a - 86\) , \( -2492 a - 5912\bigr] \) |
${y}^2+{x}{y}+{y}={x}^{3}+\left(-36a-86\right){x}-2492a-5912$ |
4.1-a3 |
4.1-a |
$6$ |
$18$ |
\(\Q(\sqrt{33}) \) |
$2$ |
$[2, 0]$ |
4.1 |
\( 2^{2} \) |
\( - 2^{9} \) |
$0.72596$ |
$(-a-2), (-a+3)$ |
0 |
$\Z/6\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
✓ |
|
$2, 3$ |
2B, 3Cs.1.1 |
$1$ |
\( 2 \) |
$1$ |
$34.81892277$ |
0.336733136 |
\( -\frac{286425}{64} a + \frac{966617}{64} \) |
\( \bigl[1\) , \( 0\) , \( 1\) , \( 4 a + 9\) , \( 92 a + 218\bigr] \) |
${y}^2+{x}{y}+{y}={x}^{3}+\left(4a+9\right){x}+92a+218$ |
4.1-a4 |
4.1-a |
$6$ |
$18$ |
\(\Q(\sqrt{33}) \) |
$2$ |
$[2, 0]$ |
4.1 |
\( 2^{2} \) |
\( - 2^{9} \) |
$0.72596$ |
$(-a-2), (-a+3)$ |
0 |
$\Z/6\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
✓ |
|
$2, 3$ |
2B, 3Cs.1.1 |
$1$ |
\( 2 \) |
$1$ |
$34.81892277$ |
0.336733136 |
\( \frac{286425}{64} a + 10628 \) |
\( \bigl[1\) , \( 0\) , \( 1\) , \( -4 a + 13\) , \( -92 a + 310\bigr] \) |
${y}^2+{x}{y}+{y}={x}^{3}+\left(-4a+13\right){x}-92a+310$ |
4.1-a5 |
4.1-a |
$6$ |
$18$ |
\(\Q(\sqrt{33}) \) |
$2$ |
$[2, 0]$ |
4.1 |
\( 2^{2} \) |
\( - 2^{27} \) |
$0.72596$ |
$(-a-2), (-a+3)$ |
0 |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
✓ |
|
$2, 3$ |
2B, 3B.1.2 |
$1$ |
\( 2 \) |
$1$ |
$3.868769197$ |
0.336733136 |
\( \frac{5519537297}{262144} a + \frac{1636371017}{32768} \) |
\( \bigl[1\) , \( 0\) , \( 1\) , \( 36 a - 122\) , \( 2492 a - 8404\bigr] \) |
${y}^2+{x}{y}+{y}={x}^{3}+\left(36a-122\right){x}+2492a-8404$ |
4.1-a6 |
4.1-a |
$6$ |
$18$ |
\(\Q(\sqrt{33}) \) |
$2$ |
$[2, 0]$ |
4.1 |
\( 2^{2} \) |
\( - 2^{3} \) |
$0.72596$ |
$(-a-2), (-a+3)$ |
0 |
$\Z/6\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
✓ |
|
$2, 3$ |
2B, 3B.1.1 |
$1$ |
\( 2 \) |
$1$ |
$34.81892277$ |
0.336733136 |
\( \frac{10838595115443}{4} a + \frac{12856090492219}{2} \) |
\( \bigl[1\) , \( 0\) , \( 1\) , \( 746 a - 2517\) , \( -18744 a + 63210\bigr] \) |
${y}^2+{x}{y}+{y}={x}^{3}+\left(746a-2517\right){x}-18744a+63210$ |
4.1-b1 |
4.1-b |
$6$ |
$18$ |
\(\Q(\sqrt{33}) \) |
$2$ |
$[2, 0]$ |
4.1 |
\( 2^{2} \) |
\( - 2^{3} \) |
$0.72596$ |
$(-a-2), (-a+3)$ |
0 |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
✓ |
|
$2, 3$ |
2B, 3B.1.2 |
$9$ |
\( 2 \) |
$1$ |
$1.489742545$ |
1.166989006 |
\( -\frac{10838595115443}{4} a + \frac{36550776099881}{4} \) |
\( \bigl[1\) , \( -a - 1\) , \( a + 1\) , \( 294 a - 990\) , \( 4809 a - 16223\bigr] \) |
${y}^2+{x}{y}+\left(a+1\right){y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(294a-990\right){x}+4809a-16223$ |
4.1-b2 |
4.1-b |
$6$ |
$18$ |
\(\Q(\sqrt{33}) \) |
$2$ |
$[2, 0]$ |
4.1 |
\( 2^{2} \) |
\( - 2^{27} \) |
$0.72596$ |
$(-a-2), (-a+3)$ |
0 |
$\Z/18\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
✓ |
|
$2, 3$ |
2B, 3B.1.1 |
$1$ |
\( 2 \cdot 3^{4} \) |
$1$ |
$13.40768290$ |
1.166989006 |
\( -\frac{5519537297}{262144} a + \frac{18610505433}{262144} \) |
\( \bigl[1\) , \( -a - 1\) , \( a + 1\) , \( 44 a - 145\) , \( -242 a + 809\bigr] \) |
${y}^2+{x}{y}+\left(a+1\right){y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(44a-145\right){x}-242a+809$ |
4.1-b3 |
4.1-b |
$6$ |
$18$ |
\(\Q(\sqrt{33}) \) |
$2$ |
$[2, 0]$ |
4.1 |
\( 2^{2} \) |
\( - 2^{9} \) |
$0.72596$ |
$(-a-2), (-a+3)$ |
0 |
$\Z/6\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
✓ |
|
$2, 3$ |
2B, 3Cs.1.1 |
$1$ |
\( 2 \cdot 3^{2} \) |
$1$ |
$13.40768290$ |
1.166989006 |
\( -\frac{286425}{64} a + \frac{966617}{64} \) |
\( \bigl[1\) , \( -a - 1\) , \( a + 1\) , \( 4 a - 10\) , \( 7 a - 31\bigr] \) |
${y}^2+{x}{y}+\left(a+1\right){y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(4a-10\right){x}+7a-31$ |
4.1-b4 |
4.1-b |
$6$ |
$18$ |
\(\Q(\sqrt{33}) \) |
$2$ |
$[2, 0]$ |
4.1 |
\( 2^{2} \) |
\( - 2^{9} \) |
$0.72596$ |
$(-a-2), (-a+3)$ |
0 |
$\Z/6\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
✓ |
|
$2, 3$ |
2B, 3Cs.1.1 |
$1$ |
\( 2 \cdot 3^{2} \) |
$1$ |
$13.40768290$ |
1.166989006 |
\( \frac{286425}{64} a + 10628 \) |
\( \bigl[1\) , \( a + 1\) , \( a + 1\) , \( -3 a - 6\) , \( -12 a - 29\bigr] \) |
${y}^2+{x}{y}+\left(a+1\right){y}={x}^{3}+\left(a+1\right){x}^{2}+\left(-3a-6\right){x}-12a-29$ |
4.1-b5 |
4.1-b |
$6$ |
$18$ |
\(\Q(\sqrt{33}) \) |
$2$ |
$[2, 0]$ |
4.1 |
\( 2^{2} \) |
\( - 2^{27} \) |
$0.72596$ |
$(-a-2), (-a+3)$ |
0 |
$\Z/18\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
✓ |
|
$2, 3$ |
2B, 3B.1.1 |
$1$ |
\( 2 \cdot 3^{4} \) |
$1$ |
$13.40768290$ |
1.166989006 |
\( \frac{5519537297}{262144} a + \frac{1636371017}{32768} \) |
\( \bigl[1\) , \( a + 1\) , \( a + 1\) , \( -43 a - 101\) , \( 197 a + 467\bigr] \) |
${y}^2+{x}{y}+\left(a+1\right){y}={x}^{3}+\left(a+1\right){x}^{2}+\left(-43a-101\right){x}+197a+467$ |
4.1-b6 |
4.1-b |
$6$ |
$18$ |
\(\Q(\sqrt{33}) \) |
$2$ |
$[2, 0]$ |
4.1 |
\( 2^{2} \) |
\( - 2^{3} \) |
$0.72596$ |
$(-a-2), (-a+3)$ |
0 |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
✓ |
|
$2, 3$ |
2B, 3B.1.2 |
$9$ |
\( 2 \) |
$1$ |
$1.489742545$ |
1.166989006 |
\( \frac{10838595115443}{4} a + \frac{12856090492219}{2} \) |
\( \bigl[1\) , \( a + 1\) , \( a + 1\) , \( -293 a - 696\) , \( -5104 a - 12109\bigr] \) |
${y}^2+{x}{y}+\left(a+1\right){y}={x}^{3}+\left(a+1\right){x}^{2}+\left(-293a-696\right){x}-5104a-12109$ |
11.1-a1 |
11.1-a |
$3$ |
$25$ |
\(\Q(\sqrt{33}) \) |
$2$ |
$[2, 0]$ |
11.1 |
\( 11 \) |
\( 11^{2} \) |
$0.93485$ |
$(-4a-9)$ |
0 |
$\mathsf{trivial}$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
✓ |
|
$5$ |
5B.4.2 |
$1$ |
\( 2 \) |
$1$ |
$8.512583687$ |
2.963701228 |
\( -\frac{52893159101157376}{11} \) |
\( \bigl[0\) , \( -a + 1\) , \( 1\) , \( -2877883 a - 6827148\) , \( 4506151140 a + 10689858189\bigr] \) |
${y}^2+{y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(-2877883a-6827148\right){x}+4506151140a+10689858189$ |
11.1-a2 |
11.1-a |
$3$ |
$25$ |
\(\Q(\sqrt{33}) \) |
$2$ |
$[2, 0]$ |
11.1 |
\( 11 \) |
\( 11^{10} \) |
$0.93485$ |
$(-4a-9)$ |
0 |
$\mathsf{trivial}$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
✓ |
|
$5$ |
5Cs.4.1 |
$1$ |
\( 2 \) |
$1$ |
$8.512583687$ |
2.963701228 |
\( -\frac{122023936}{161051} \) |
\( \bigl[0\) , \( a\) , \( 1\) , \( 3803 a - 12821\) , \( -394830 a + 1331479\bigr] \) |
${y}^2+{y}={x}^{3}+a{x}^{2}+\left(3803a-12821\right){x}-394830a+1331479$ |
11.1-a3 |
11.1-a |
$3$ |
$25$ |
\(\Q(\sqrt{33}) \) |
$2$ |
$[2, 0]$ |
11.1 |
\( 11 \) |
\( 11^{2} \) |
$0.93485$ |
$(-4a-9)$ |
0 |
$\mathsf{trivial}$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
✓ |
|
$5$ |
5B.4.1 |
$1$ |
\( 2 \) |
$1$ |
$8.512583687$ |
2.963701228 |
\( -\frac{4096}{11} \) |
\( \bigl[0\) , \( -a + 1\) , \( 1\) , \( -123 a - 288\) , \( -2880 a - 6831\bigr] \) |
${y}^2+{y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(-123a-288\right){x}-2880a-6831$ |
11.1-b1 |
11.1-b |
$3$ |
$25$ |
\(\Q(\sqrt{33}) \) |
$2$ |
$[2, 0]$ |
11.1 |
\( 11 \) |
\( 11^{2} \) |
$0.93485$ |
$(-4a-9)$ |
$1$ |
$\mathsf{trivial}$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
✓ |
|
$5$ |
5B.1.2 |
$1$ |
\( 2 \) |
$7.655751664$ |
$0.064435690$ |
0.343492567 |
\( -\frac{52893159101157376}{11} \) |
\( \bigl[0\) , \( -1\) , \( 1\) , \( -7820\) , \( -263580\bigr] \) |
${y}^2+{y}={x}^{3}-{x}^{2}-7820{x}-263580$ |
11.1-b2 |
11.1-b |
$3$ |
$25$ |
\(\Q(\sqrt{33}) \) |
$2$ |
$[2, 0]$ |
11.1 |
\( 11 \) |
\( 11^{10} \) |
$0.93485$ |
$(-4a-9)$ |
$1$ |
$\Z/5\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
✓ |
|
$5$ |
5Cs.1.1 |
$1$ |
\( 2 \cdot 5 \) |
$1.531150332$ |
$1.610892258$ |
0.343492567 |
\( -\frac{122023936}{161051} \) |
\( \bigl[0\) , \( -1\) , \( 1\) , \( -10\) , \( -20\bigr] \) |
${y}^2+{y}={x}^{3}-{x}^{2}-10{x}-20$ |
11.1-b3 |
11.1-b |
$3$ |
$25$ |
\(\Q(\sqrt{33}) \) |
$2$ |
$[2, 0]$ |
11.1 |
\( 11 \) |
\( 11^{2} \) |
$0.93485$ |
$(-4a-9)$ |
$1$ |
$\Z/5\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
✓ |
|
$5$ |
5B.1.1 |
$1$ |
\( 2 \) |
$0.306230066$ |
$40.27230645$ |
0.343492567 |
\( -\frac{4096}{11} \) |
\( \bigl[0\) , \( -1\) , \( 1\) , \( 0\) , \( 0\bigr] \) |
${y}^2+{y}={x}^{3}-{x}^{2}$ |
12.1-a1 |
12.1-a |
$12$ |
$36$ |
\(\Q(\sqrt{33}) \) |
$2$ |
$[2, 0]$ |
12.1 |
\( 2^{2} \cdot 3 \) |
\( - 2^{13} \cdot 3 \) |
$0.95541$ |
$(-a-2), (-a+3), (-2a+7)$ |
0 |
$\Z/6\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
✓ |
|
$2, 3$ |
2B, 3B.1.1 |
$1$ |
\( 2 \cdot 3^{2} \) |
$1$ |
$15.71636264$ |
1.367933784 |
\( -\frac{74785175353186375}{1536} a + \frac{252196650035225375}{1536} \) |
\( \bigl[1\) , \( -a - 1\) , \( 1\) , \( 43110 a - 145374\) , \( -8233861 a + 27766893\bigr] \) |
${y}^2+{x}{y}+{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(43110a-145374\right){x}-8233861a+27766893$ |
12.1-a2 |
12.1-a |
$12$ |
$36$ |
\(\Q(\sqrt{33}) \) |
$2$ |
$[2, 0]$ |
12.1 |
\( 2^{2} \cdot 3 \) |
\( - 2^{37} \cdot 3 \) |
$0.95541$ |
$(-a-2), (-a+3), (-2a+7)$ |
0 |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
✓ |
|
$2, 3$ |
2B, 3B.1.2 |
$9$ |
\( 2 \) |
$1$ |
$1.746262515$ |
1.367933784 |
\( -\frac{1710723757560125}{206158430208} a + \frac{633709458168875}{25769803776} \) |
\( \bigl[1\) , \( -a - 1\) , \( 1\) , \( 4470 a - 15069\) , \( 272609 a - 919317\bigr] \) |
${y}^2+{x}{y}+{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(4470a-15069\right){x}+272609a-919317$ |
12.1-a3 |
12.1-a |
$12$ |
$36$ |
\(\Q(\sqrt{33}) \) |
$2$ |
$[2, 0]$ |
12.1 |
\( 2^{2} \cdot 3 \) |
\( - 2^{15} \cdot 3^{3} \) |
$0.95541$ |
$(-a-2), (-a+3), (-2a+7)$ |
0 |
$\Z/6\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
✓ |
|
$2, 3$ |
2B, 3Cs.1.1 |
$1$ |
\( 2 \cdot 3^{2} \) |
$1$ |
$15.71636264$ |
1.367933784 |
\( -\frac{415636375}{36864} a + \frac{181542625}{4608} \) |
\( \bigl[1\) , \( -a - 1\) , \( 1\) , \( 535 a - 1799\) , \( -10951 a + 36927\bigr] \) |
${y}^2+{x}{y}+{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(535a-1799\right){x}-10951a+36927$ |
12.1-a4 |
12.1-a |
$12$ |
$36$ |
\(\Q(\sqrt{33}) \) |
$2$ |
$[2, 0]$ |
12.1 |
\( 2^{2} \cdot 3 \) |
\( 2^{12} \cdot 3^{6} \) |
$0.95541$ |
$(-a-2), (-a+3), (-2a+7)$ |
0 |
$\Z/2\Z\oplus\Z/6\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
✓ |
|
$2, 3$ |
2Cs, 3Cs.1.1 |
$1$ |
\( 2^{3} \cdot 3^{2} \) |
$1$ |
$15.71636264$ |
1.367933784 |
\( \frac{3723875}{1728} \) |
\( \bigl[1\) , \( -a - 1\) , \( 1\) , \( -25 a - 59\) , \( 89 a + 211\bigr] \) |
${y}^2+{x}{y}+{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(-25a-59\right){x}+89a+211$ |
12.1-a5 |
12.1-a |
$12$ |
$36$ |
\(\Q(\sqrt{33}) \) |
$2$ |
$[2, 0]$ |
12.1 |
\( 2^{2} \cdot 3 \) |
\( 2^{10} \cdot 3^{4} \) |
$0.95541$ |
$(-a-2), (-a+3), (-2a+7)$ |
0 |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
✓ |
|
$2, 3$ |
2B, 3B.1.2 |
$9$ |
\( 2^{2} \) |
$1$ |
$0.873131257$ |
1.367933784 |
\( -\frac{2879604455941411323125}{4608} a + \frac{404618180215561464625}{192} \) |
\( \bigl[1\) , \( -a - 1\) , \( 1\) , \( -1110 a - 2709\) , \( -26351 a - 62809\bigr] \) |
${y}^2+{x}{y}+{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(-1110a-2709\right){x}-26351a-62809$ |
12.1-a6 |
12.1-a |
$12$ |
$36$ |
\(\Q(\sqrt{33}) \) |
$2$ |
$[2, 0]$ |
12.1 |
\( 2^{2} \cdot 3 \) |
\( - 2^{37} \cdot 3 \) |
$0.95541$ |
$(-a-2), (-a+3), (-2a+7)$ |
0 |
$\Z/6\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
✓ |
|
$2, 3$ |
2B, 3B.1.1 |
$1$ |
\( 2^{2} \cdot 3^{2} \) |
$1$ |
$7.858181321$ |
1.367933784 |
\( \frac{1710723757560125}{206158430208} a + \frac{3358951907790875}{206158430208} \) |
\( \bigl[1\) , \( 0\) , \( a\) , \( 22 a - 88\) , \( -134 a + 464\bigr] \) |
${y}^2+{x}{y}+a{y}={x}^{3}+\left(22a-88\right){x}-134a+464$ |
12.1-a7 |
12.1-a |
$12$ |
$36$ |
\(\Q(\sqrt{33}) \) |
$2$ |
$[2, 0]$ |
12.1 |
\( 2^{2} \cdot 3 \) |
\( - 2^{15} \cdot 3^{3} \) |
$0.95541$ |
$(-a-2), (-a+3), (-2a+7)$ |
0 |
$\Z/6\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
✓ |
|
$2, 3$ |
2B, 3Cs.1.1 |
$1$ |
\( 2^{2} \cdot 3^{2} \) |
$1$ |
$7.858181321$ |
1.367933784 |
\( \frac{415636375}{36864} a + \frac{1036704625}{36864} \) |
\( \bigl[1\) , \( 0\) , \( a\) , \( -3 a + 7\) , \( a - 7\bigr] \) |
${y}^2+{x}{y}+a{y}={x}^{3}+\left(-3a+7\right){x}+a-7$ |
12.1-a8 |
12.1-a |
$12$ |
$36$ |
\(\Q(\sqrt{33}) \) |
$2$ |
$[2, 0]$ |
12.1 |
\( 2^{2} \cdot 3 \) |
\( 2^{6} \cdot 3^{12} \) |
$0.95541$ |
$(-a-2), (-a+3), (-2a+7)$ |
0 |
$\Z/6\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
✓ |
|
$2, 3$ |
2B, 3Cs.1.1 |
$1$ |
\( 2^{2} \cdot 3^{2} \) |
$1$ |
$7.858181321$ |
1.367933784 |
\( \frac{8934171875}{5832} \) |
\( \bigl[1\) , \( -a - 1\) , \( 1\) , \( -345 a - 819\) , \( 6409 a + 15203\bigr] \) |
${y}^2+{x}{y}+{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(-345a-819\right){x}+6409a+15203$ |
12.1-a9 |
12.1-a |
$12$ |
$36$ |
\(\Q(\sqrt{33}) \) |
$2$ |
$[2, 0]$ |
12.1 |
\( 2^{2} \cdot 3 \) |
\( 2^{20} \cdot 3^{2} \) |
$0.95541$ |
$(-a-2), (-a+3), (-2a+7)$ |
0 |
$\Z/2\Z\oplus\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
✓ |
|
$2, 3$ |
2Cs, 3B.1.2 |
$9$ |
\( 2^{3} \) |
$1$ |
$1.746262515$ |
1.367933784 |
\( -\frac{257094293735125}{786432} a + \frac{110018396673875}{98304} \) |
\( \bigl[1\) , \( -a - 1\) , \( 1\) , \( -1060 a - 2519\) , \( -30451 a - 72245\bigr] \) |
${y}^2+{x}{y}+{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(-1060a-2519\right){x}-30451a-72245$ |
12.1-a10 |
12.1-a |
$12$ |
$36$ |
\(\Q(\sqrt{33}) \) |
$2$ |
$[2, 0]$ |
12.1 |
\( 2^{2} \cdot 3 \) |
\( 2^{20} \cdot 3^{2} \) |
$0.95541$ |
$(-a-2), (-a+3), (-2a+7)$ |
0 |
$\Z/2\Z\oplus\Z/6\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
✓ |
|
$2, 3$ |
2Cs, 3B.1.1 |
$1$ |
\( 2^{3} \cdot 3^{2} \) |
$1$ |
$15.71636264$ |
1.367933784 |
\( \frac{257094293735125}{786432} a + \frac{207684293218625}{262144} \) |
\( \bigl[1\) , \( -a - 1\) , \( 1\) , \( -1750 a - 4154\) , \( 70019 a + 166105\bigr] \) |
${y}^2+{x}{y}+{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(-1750a-4154\right){x}+70019a+166105$ |
12.1-a11 |
12.1-a |
$12$ |
$36$ |
\(\Q(\sqrt{33}) \) |
$2$ |
$[2, 0]$ |
12.1 |
\( 2^{2} \cdot 3 \) |
\( - 2^{13} \cdot 3 \) |
$0.95541$ |
$(-a-2), (-a+3), (-2a+7)$ |
0 |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
✓ |
|
$2, 3$ |
2B, 3B.1.2 |
$9$ |
\( 2^{2} \) |
$1$ |
$0.873131257$ |
1.367933784 |
\( \frac{74785175353186375}{1536} a + \frac{22176434335254875}{192} \) |
\( \bigl[1\) , \( 0\) , \( a\) , \( 22 a - 193\) , \( 181 a - 1111\bigr] \) |
${y}^2+{x}{y}+a{y}={x}^{3}+\left(22a-193\right){x}+181a-1111$ |
12.1-a12 |
12.1-a |
$12$ |
$36$ |
\(\Q(\sqrt{33}) \) |
$2$ |
$[2, 0]$ |
12.1 |
\( 2^{2} \cdot 3 \) |
\( 2^{10} \cdot 3^{4} \) |
$0.95541$ |
$(-a-2), (-a+3), (-2a+7)$ |
0 |
$\Z/6\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
✓ |
|
$2, 3$ |
2B, 3B.1.1 |
$1$ |
\( 2^{2} \cdot 3^{2} \) |
$1$ |
$7.858181321$ |
1.367933784 |
\( \frac{2879604455941411323125}{4608} a + \frac{6831231869232063827875}{4608} \) |
\( \bigl[1\) , \( -a - 1\) , \( 1\) , \( -28020 a - 66474\) , \( 4365739 a + 10356761\bigr] \) |
${y}^2+{x}{y}+{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(-28020a-66474\right){x}+4365739a+10356761$ |
12.1-b1 |
12.1-b |
$12$ |
$36$ |
\(\Q(\sqrt{33}) \) |
$2$ |
$[2, 0]$ |
12.1 |
\( 2^{2} \cdot 3 \) |
\( - 2^{13} \cdot 3 \) |
$0.95541$ |
$(-a-2), (-a+3), (-2a+7)$ |
0 |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
✓ |
|
$2, 3$ |
2B, 3B.1.2 |
$9$ |
\( 2^{2} \) |
$1$ |
$0.873131257$ |
1.367933784 |
\( -\frac{74785175353186375}{1536} a + \frac{252196650035225375}{1536} \) |
\( \bigl[1\) , \( 0\) , \( a + 1\) , \( -23 a - 171\) , \( -182 a - 930\bigr] \) |
${y}^2+{x}{y}+\left(a+1\right){y}={x}^{3}+\left(-23a-171\right){x}-182a-930$ |
12.1-b2 |
12.1-b |
$12$ |
$36$ |
\(\Q(\sqrt{33}) \) |
$2$ |
$[2, 0]$ |
12.1 |
\( 2^{2} \cdot 3 \) |
\( - 2^{37} \cdot 3 \) |
$0.95541$ |
$(-a-2), (-a+3), (-2a+7)$ |
0 |
$\Z/6\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
✓ |
|
$2, 3$ |
2B, 3B.1.1 |
$1$ |
\( 2^{2} \cdot 3^{2} \) |
$1$ |
$7.858181321$ |
1.367933784 |
\( -\frac{1710723757560125}{206158430208} a + \frac{633709458168875}{25769803776} \) |
\( \bigl[1\) , \( 0\) , \( a + 1\) , \( -23 a - 66\) , \( 133 a + 330\bigr] \) |
${y}^2+{x}{y}+\left(a+1\right){y}={x}^{3}+\left(-23a-66\right){x}+133a+330$ |
12.1-b3 |
12.1-b |
$12$ |
$36$ |
\(\Q(\sqrt{33}) \) |
$2$ |
$[2, 0]$ |
12.1 |
\( 2^{2} \cdot 3 \) |
\( - 2^{15} \cdot 3^{3} \) |
$0.95541$ |
$(-a-2), (-a+3), (-2a+7)$ |
0 |
$\Z/6\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
✓ |
|
$2, 3$ |
2B, 3Cs.1.1 |
$1$ |
\( 2^{2} \cdot 3^{2} \) |
$1$ |
$7.858181321$ |
1.367933784 |
\( -\frac{415636375}{36864} a + \frac{181542625}{4608} \) |
\( \bigl[1\) , \( 0\) , \( a + 1\) , \( 2 a + 4\) , \( -2 a - 6\bigr] \) |
${y}^2+{x}{y}+\left(a+1\right){y}={x}^{3}+\left(2a+4\right){x}-2a-6$ |
12.1-b4 |
12.1-b |
$12$ |
$36$ |
\(\Q(\sqrt{33}) \) |
$2$ |
$[2, 0]$ |
12.1 |
\( 2^{2} \cdot 3 \) |
\( 2^{12} \cdot 3^{6} \) |
$0.95541$ |
$(-a-2), (-a+3), (-2a+7)$ |
0 |
$\Z/2\Z\oplus\Z/6\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
✓ |
|
$2, 3$ |
2Cs, 3Cs.1.1 |
$1$ |
\( 2^{3} \cdot 3^{2} \) |
$1$ |
$15.71636264$ |
1.367933784 |
\( \frac{3723875}{1728} \) |
\( \bigl[1\) , \( a + 1\) , \( 0\) , \( 27 a - 84\) , \( -63 a + 216\bigr] \) |
${y}^2+{x}{y}={x}^{3}+\left(a+1\right){x}^{2}+\left(27a-84\right){x}-63a+216$ |
12.1-b5 |
12.1-b |
$12$ |
$36$ |
\(\Q(\sqrt{33}) \) |
$2$ |
$[2, 0]$ |
12.1 |
\( 2^{2} \cdot 3 \) |
\( 2^{10} \cdot 3^{4} \) |
$0.95541$ |
$(-a-2), (-a+3), (-2a+7)$ |
0 |
$\Z/6\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
✓ |
|
$2, 3$ |
2B, 3B.1.1 |
$1$ |
\( 2^{2} \cdot 3^{2} \) |
$1$ |
$7.858181321$ |
1.367933784 |
\( -\frac{2879604455941411323125}{4608} a + \frac{404618180215561464625}{192} \) |
\( \bigl[1\) , \( a + 1\) , \( 0\) , \( 28022 a - 94494\) , \( -4337718 a + 14628006\bigr] \) |
${y}^2+{x}{y}={x}^{3}+\left(a+1\right){x}^{2}+\left(28022a-94494\right){x}-4337718a+14628006$ |
12.1-b6 |
12.1-b |
$12$ |
$36$ |
\(\Q(\sqrt{33}) \) |
$2$ |
$[2, 0]$ |
12.1 |
\( 2^{2} \cdot 3 \) |
\( - 2^{37} \cdot 3 \) |
$0.95541$ |
$(-a-2), (-a+3), (-2a+7)$ |
0 |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
✓ |
|
$2, 3$ |
2B, 3B.1.2 |
$9$ |
\( 2 \) |
$1$ |
$1.746262515$ |
1.367933784 |
\( \frac{1710723757560125}{206158430208} a + \frac{3358951907790875}{206158430208} \) |
\( \bigl[1\) , \( a + 1\) , \( 0\) , \( -4468 a - 10599\) , \( -277078 a - 657307\bigr] \) |
${y}^2+{x}{y}={x}^{3}+\left(a+1\right){x}^{2}+\left(-4468a-10599\right){x}-277078a-657307$ |
12.1-b7 |
12.1-b |
$12$ |
$36$ |
\(\Q(\sqrt{33}) \) |
$2$ |
$[2, 0]$ |
12.1 |
\( 2^{2} \cdot 3 \) |
\( - 2^{15} \cdot 3^{3} \) |
$0.95541$ |
$(-a-2), (-a+3), (-2a+7)$ |
0 |
$\Z/6\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
✓ |
|
$2, 3$ |
2B, 3Cs.1.1 |
$1$ |
\( 2 \cdot 3^{2} \) |
$1$ |
$15.71636264$ |
1.367933784 |
\( \frac{415636375}{36864} a + \frac{1036704625}{36864} \) |
\( \bigl[1\) , \( a + 1\) , \( 0\) , \( -533 a - 1264\) , \( 10417 a + 24712\bigr] \) |
${y}^2+{x}{y}={x}^{3}+\left(a+1\right){x}^{2}+\left(-533a-1264\right){x}+10417a+24712$ |
12.1-b8 |
12.1-b |
$12$ |
$36$ |
\(\Q(\sqrt{33}) \) |
$2$ |
$[2, 0]$ |
12.1 |
\( 2^{2} \cdot 3 \) |
\( 2^{6} \cdot 3^{12} \) |
$0.95541$ |
$(-a-2), (-a+3), (-2a+7)$ |
0 |
$\Z/6\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
✓ |
|
$2, 3$ |
2B, 3Cs.1.1 |
$1$ |
\( 2^{2} \cdot 3^{2} \) |
$1$ |
$7.858181321$ |
1.367933784 |
\( \frac{8934171875}{5832} \) |
\( \bigl[1\) , \( a + 1\) , \( 0\) , \( 347 a - 1164\) , \( -6063 a + 20448\bigr] \) |
${y}^2+{x}{y}={x}^{3}+\left(a+1\right){x}^{2}+\left(347a-1164\right){x}-6063a+20448$ |
12.1-b9 |
12.1-b |
$12$ |
$36$ |
\(\Q(\sqrt{33}) \) |
$2$ |
$[2, 0]$ |
12.1 |
\( 2^{2} \cdot 3 \) |
\( 2^{20} \cdot 3^{2} \) |
$0.95541$ |
$(-a-2), (-a+3), (-2a+7)$ |
0 |
$\Z/2\Z\oplus\Z/6\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
✓ |
|
$2, 3$ |
2Cs, 3B.1.1 |
$1$ |
\( 2^{3} \cdot 3^{2} \) |
$1$ |
$15.71636264$ |
1.367933784 |
\( -\frac{257094293735125}{786432} a + \frac{110018396673875}{98304} \) |
\( \bigl[1\) , \( a + 1\) , \( 0\) , \( 1752 a - 5904\) , \( -68268 a + 230220\bigr] \) |
${y}^2+{x}{y}={x}^{3}+\left(a+1\right){x}^{2}+\left(1752a-5904\right){x}-68268a+230220$ |
12.1-b10 |
12.1-b |
$12$ |
$36$ |
\(\Q(\sqrt{33}) \) |
$2$ |
$[2, 0]$ |
12.1 |
\( 2^{2} \cdot 3 \) |
\( 2^{20} \cdot 3^{2} \) |
$0.95541$ |
$(-a-2), (-a+3), (-2a+7)$ |
0 |
$\Z/2\Z\oplus\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
✓ |
|
$2, 3$ |
2Cs, 3B.1.2 |
$9$ |
\( 2^{3} \) |
$1$ |
$1.746262515$ |
1.367933784 |
\( \frac{257094293735125}{786432} a + \frac{207684293218625}{262144} \) |
\( \bigl[1\) , \( a + 1\) , \( 0\) , \( 1062 a - 3579\) , \( 31512 a - 106275\bigr] \) |
${y}^2+{x}{y}={x}^{3}+\left(a+1\right){x}^{2}+\left(1062a-3579\right){x}+31512a-106275$ |
12.1-b11 |
12.1-b |
$12$ |
$36$ |
\(\Q(\sqrt{33}) \) |
$2$ |
$[2, 0]$ |
12.1 |
\( 2^{2} \cdot 3 \) |
\( - 2^{13} \cdot 3 \) |
$0.95541$ |
$(-a-2), (-a+3), (-2a+7)$ |
0 |
$\Z/6\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
✓ |
|
$2, 3$ |
2B, 3B.1.1 |
$1$ |
\( 2 \cdot 3^{2} \) |
$1$ |
$15.71636264$ |
1.367933784 |
\( \frac{74785175353186375}{1536} a + \frac{22176434335254875}{192} \) |
\( \bigl[1\) , \( a + 1\) , \( 0\) , \( -43108 a - 102264\) , \( 8190752 a + 19430768\bigr] \) |
${y}^2+{x}{y}={x}^{3}+\left(a+1\right){x}^{2}+\left(-43108a-102264\right){x}+8190752a+19430768$ |
12.1-b12 |
12.1-b |
$12$ |
$36$ |
\(\Q(\sqrt{33}) \) |
$2$ |
$[2, 0]$ |
12.1 |
\( 2^{2} \cdot 3 \) |
\( 2^{10} \cdot 3^{4} \) |
$0.95541$ |
$(-a-2), (-a+3), (-2a+7)$ |
0 |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
✓ |
|
$2, 3$ |
2B, 3B.1.2 |
$9$ |
\( 2^{2} \) |
$1$ |
$0.873131257$ |
1.367933784 |
\( \frac{2879604455941411323125}{4608} a + \frac{6831231869232063827875}{4608} \) |
\( \bigl[1\) , \( a + 1\) , \( 0\) , \( 1112 a - 3819\) , \( 27462 a - 92979\bigr] \) |
${y}^2+{x}{y}={x}^{3}+\left(a+1\right){x}^{2}+\left(1112a-3819\right){x}+27462a-92979$ |
16.2-a1 |
16.2-a |
$2$ |
$2$ |
\(\Q(\sqrt{33}) \) |
$2$ |
$[2, 0]$ |
16.2 |
\( 2^{4} \) |
\( - 2^{11} \) |
$1.02666$ |
$(-a-2), (-a+3)$ |
0 |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2B |
$1$ |
\( 2 \) |
$1$ |
$13.74710193$ |
1.196531640 |
\( -\frac{18649}{2} a + 33120 \) |
\( \bigl[a\) , \( a - 1\) , \( a\) , \( 31 a + 72\) , \( 26 a + 60\bigr] \) |
${y}^2+a{x}{y}+a{y}={x}^{3}+\left(a-1\right){x}^{2}+\left(31a+72\right){x}+26a+60$ |
16.2-a2 |
16.2-a |
$2$ |
$2$ |
\(\Q(\sqrt{33}) \) |
$2$ |
$[2, 0]$ |
16.2 |
\( 2^{4} \) |
\( - 2^{13} \) |
$1.02666$ |
$(-a-2), (-a+3)$ |
0 |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2B |
$1$ |
\( 2 \) |
$1$ |
$13.74710193$ |
1.196531640 |
\( \frac{1241}{4} a + 736 \) |
\( \bigl[a\) , \( a - 1\) , \( a\) , \( a\) , \( 130 a - 436\bigr] \) |
${y}^2+a{x}{y}+a{y}={x}^{3}+\left(a-1\right){x}^{2}+a{x}+130a-436$ |
*The rank, regulator and analytic order of Ш are
not known for all curves in the database; curves for which these are
unknown will not appear in searches specifying one of these
quantities.