Learn more

Refine search


Results (48 matches)

  displayed columns for results
Label Class Base field Conductor norm Rank Torsion CM Sato-Tate Regulator Period Leading coeff j-invariant Weierstrass coefficients Weierstrass equation
588.1-a1 588.1-a \(\Q(\sqrt{33}) \) \( 2^{2} \cdot 3 \cdot 7^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $17.32828945$ 3.016468009 \( -\frac{4724901005}{336} a + \frac{15933749821}{336} \) \( \bigl[1\) , \( a + 1\) , \( 1\) , \( 97 a + 230\) , \( -2543 a - 6033\bigr] \) ${y}^2+{x}{y}+{y}={x}^{3}+\left(a+1\right){x}^{2}+\left(97a+230\right){x}-2543a-6033$
588.1-a2 588.1-a \(\Q(\sqrt{33}) \) \( 2^{2} \cdot 3 \cdot 7^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $8.664144725$ 3.016468009 \( \frac{286191179}{43218} \) \( \bigl[1\) , \( a + 1\) , \( 1\) , \( 111 a - 368\) , \( 873 a - 2941\bigr] \) ${y}^2+{x}{y}+{y}={x}^{3}+\left(a+1\right){x}^{2}+\left(111a-368\right){x}+873a-2941$
588.1-a3 588.1-a \(\Q(\sqrt{33}) \) \( 2^{2} \cdot 3 \cdot 7^{2} \) 0 $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $17.32828945$ 3.016468009 \( \frac{5735339}{588} \) \( \bigl[1\) , \( a + 1\) , \( 1\) , \( 31 a - 98\) , \( -147 a + 499\bigr] \) ${y}^2+{x}{y}+{y}={x}^{3}+\left(a+1\right){x}^{2}+\left(31a-98\right){x}-147a+499$
588.1-a4 588.1-a \(\Q(\sqrt{33}) \) \( 2^{2} \cdot 3 \cdot 7^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $8.664144725$ 3.016468009 \( \frac{4724901005}{336} a + \frac{700553051}{21} \) \( \bigl[1\) , \( 0\) , \( a\) , \( -12 a - 27\) , \( -37 a - 89\bigr] \) ${y}^2+{x}{y}+a{y}={x}^{3}+\left(-12a-27\right){x}-37a-89$
588.1-b1 588.1-b \(\Q(\sqrt{33}) \) \( 2^{2} \cdot 3 \cdot 7^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $3.161357930$ 2.751608890 \( -\frac{101522315347710125}{154140672} a + \frac{42795225991458875}{19267584} \) \( \bigl[1\) , \( 0\) , \( a\) , \( 22 a - 88\) , \( -564 a - 704\bigr] \) ${y}^2+{x}{y}+a{y}={x}^{3}+\left(22a-88\right){x}-564a-704$
588.1-b2 588.1-b \(\Q(\sqrt{33}) \) \( 2^{2} \cdot 3 \cdot 7^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $1.580678965$ 2.751608890 \( \frac{3648707754875}{1660262688} \) \( \bigl[1\) , \( a + 1\) , \( 1\) , \( 2567 a - 8657\) , \( 54507 a - 183817\bigr] \) ${y}^2+{x}{y}+{y}={x}^{3}+\left(a+1\right){x}^{2}+\left(2567a-8657\right){x}+54507a-183817$
588.1-b3 588.1-b \(\Q(\sqrt{33}) \) \( 2^{2} \cdot 3 \cdot 7^{2} \) 0 $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $3.161357930$ 2.751608890 \( \frac{459206250875}{7375872} \) \( \bigl[1\) , \( a + 1\) , \( 1\) , \( 1287 a - 4337\) , \( -42453 a + 143159\bigr] \) ${y}^2+{x}{y}+{y}={x}^{3}+\left(a+1\right){x}^{2}+\left(1287a-4337\right){x}-42453a+143159$
588.1-b4 588.1-b \(\Q(\sqrt{33}) \) \( 2^{2} \cdot 3 \cdot 7^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $1.580678965$ 2.751608890 \( \frac{101522315347710125}{154140672} a + \frac{240839492583960875}{154140672} \) \( \bigl[1\) , \( -a - 1\) , \( 1\) , \( 4470 a - 15069\) , \( -44025321 a + 148465765\bigr] \) ${y}^2+{x}{y}+{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(4470a-15069\right){x}-44025321a+148465765$
588.1-c1 588.1-c \(\Q(\sqrt{33}) \) \( 2^{2} \cdot 3 \cdot 7^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.071160584$ 2.997767198 \( -\frac{5157875737403123729379833826895}{89772925384654848} a + \frac{17393808016667058105746932807943}{89772925384654848} \) \( \bigl[1\) , \( a + 1\) , \( 0\) , \( -3479653 a - 8256271\) , \( 7292337291 a + 17299452525\bigr] \) ${y}^2+{x}{y}={x}^{3}+\left(a+1\right){x}^{2}+\left(-3479653a-8256271\right){x}+7292337291a+17299452525$
588.1-c2 588.1-c \(\Q(\sqrt{33}) \) \( 2^{2} \cdot 3 \cdot 7^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.071160584$ 2.997767198 \( \frac{779828911477214942771}{154308452600236032} \) \( \bigl[1\) , \( a + 1\) , \( 0\) , \( 1534083 a - 5177523\) , \( 1422405171 a - 4796672715\bigr] \) ${y}^2+{x}{y}={x}^{3}+\left(a+1\right){x}^{2}+\left(1534083a-5177523\right){x}+1422405171a-4796672715$
588.1-c3 588.1-c \(\Q(\sqrt{33}) \) \( 2^{2} \cdot 3 \cdot 7^{2} \) 0 $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.142321169$ 2.997767198 \( \frac{661452718394879874611}{36407410163712} \) \( \bigl[1\) , \( a + 1\) , \( 0\) , \( 1452163 a - 4901043\) , \( 1614896691 a - 5445796555\bigr] \) ${y}^2+{x}{y}={x}^{3}+\left(a+1\right){x}^{2}+\left(1452163a-4901043\right){x}+1614896691a-5445796555$
588.1-c4 588.1-c \(\Q(\sqrt{33}) \) \( 2^{2} \cdot 3 \cdot 7^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.142321169$ 2.997767198 \( \frac{5157875737403123729379833826895}{89772925384654848} a + \frac{1529491534907991797045887372631}{11221615673081856} \) \( \bigl[1\) , \( 0\) , \( a + 1\) , \( -570814 a - 1363587\) , \( 399598457 a + 947527862\bigr] \) ${y}^2+{x}{y}+\left(a+1\right){y}={x}^{3}+\left(-570814a-1363587\right){x}+399598457a+947527862$
588.1-d1 588.1-d \(\Q(\sqrt{33}) \) \( 2^{2} \cdot 3 \cdot 7^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $2.783319616$ 2.422568772 \( -\frac{7239390125}{150528} a + \frac{953264891}{18816} \) \( \bigl[1\) , \( -a - 1\) , \( 0\) , \( -714 a - 1693\) , \( -16786 a - 39821\bigr] \) ${y}^2+{x}{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(-714a-1693\right){x}-16786a-39821$
588.1-d2 588.1-d \(\Q(\sqrt{33}) \) \( 2^{2} \cdot 3 \cdot 7^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $2.783319616$ 2.422568772 \( \frac{491441498361}{224} a + \frac{15613894844}{3} \) \( \bigl[1\) , \( 0\) , \( a + 1\) , \( -14 a - 34\) , \( -48 a - 120\bigr] \) ${y}^2+{x}{y}+\left(a+1\right){y}={x}^{3}+\left(-14a-34\right){x}-48a-120$
588.1-e1 588.1-e \(\Q(\sqrt{33}) \) \( 2^{2} \cdot 3 \cdot 7^{2} \) $1$ $\Z/8\Z$ $\mathrm{SU}(2)$ $0.873443001$ $12.07873502$ 7.346137370 \( -\frac{7189057}{16128} \) \( \bigl[1\) , \( 1\) , \( 1\) , \( -4\) , \( 5\bigr] \) ${y}^2+{x}{y}+{y}={x}^{3}+{x}^{2}-4{x}+5$
588.1-e2 588.1-e \(\Q(\sqrt{33}) \) \( 2^{2} \cdot 3 \cdot 7^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $6.987544015$ $0.754920939$ 7.346137370 \( \frac{6359387729183}{4218578658} \) \( \bigl[1\) , \( 1\) , \( 1\) , \( 386\) , \( 1277\bigr] \) ${y}^2+{x}{y}+{y}={x}^{3}+{x}^{2}+386{x}+1277$
588.1-e3 588.1-e \(\Q(\sqrt{33}) \) \( 2^{2} \cdot 3 \cdot 7^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $3.493772007$ $3.019683757$ 7.346137370 \( \frac{124475734657}{63011844} \) \( \bigl[1\) , \( 1\) , \( 1\) , \( -104\) , \( 101\bigr] \) ${y}^2+{x}{y}+{y}={x}^{3}+{x}^{2}-104{x}+101$
588.1-e4 588.1-e \(\Q(\sqrt{33}) \) \( 2^{2} \cdot 3 \cdot 7^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $6.987544015$ $0.754920939$ 7.346137370 \( \frac{84448510979617}{933897762} \) \( \bigl[1\) , \( 1\) , \( 1\) , \( -914\) , \( -10915\bigr] \) ${y}^2+{x}{y}+{y}={x}^{3}+{x}^{2}-914{x}-10915$
588.1-e5 588.1-e \(\Q(\sqrt{33}) \) \( 2^{2} \cdot 3 \cdot 7^{2} \) $1$ $\Z/2\Z\oplus\Z/4\Z$ $\mathrm{SU}(2)$ $1.746886003$ $12.07873502$ 7.346137370 \( \frac{65597103937}{63504} \) \( \bigl[1\) , \( 1\) , \( 1\) , \( -84\) , \( 261\bigr] \) ${y}^2+{x}{y}+{y}={x}^{3}+{x}^{2}-84{x}+261$
588.1-e6 588.1-e \(\Q(\sqrt{33}) \) \( 2^{2} \cdot 3 \cdot 7^{2} \) $1$ $\Z/4\Z$ $\mathrm{SU}(2)$ $3.493772007$ $12.07873502$ 7.346137370 \( \frac{268498407453697}{252} \) \( \bigl[1\) , \( 1\) , \( 1\) , \( -1344\) , \( 18405\bigr] \) ${y}^2+{x}{y}+{y}={x}^{3}+{x}^{2}-1344{x}+18405$
588.1-f1 588.1-f \(\Q(\sqrt{33}) \) \( 2^{2} \cdot 3 \cdot 7^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $19.68882810$ 3.427385045 \( -\frac{491441498361}{224} a + \frac{4971836940139}{672} \) \( \bigl[1\) , \( a + 1\) , \( 0\) , \( -549 a - 1302\) , \( 92817 a + 220188\bigr] \) ${y}^2+{x}{y}={x}^{3}+\left(a+1\right){x}^{2}+\left(-549a-1302\right){x}+92817a+220188$
588.1-f2 588.1-f \(\Q(\sqrt{33}) \) \( 2^{2} \cdot 3 \cdot 7^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $19.68882810$ 3.427385045 \( \frac{7239390125}{150528} a + \frac{386729003}{150528} \) \( \bigl[1\) , \( -a - 1\) , \( 0\) , \( -24 a - 58\) , \( 150 a + 356\bigr] \) ${y}^2+{x}{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(-24a-58\right){x}+150a+356$
588.1-g1 588.1-g \(\Q(\sqrt{33}) \) \( 2^{2} \cdot 3 \cdot 7^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.291587028$ $3.656520471$ 3.712010837 \( -\frac{33698267}{193536} \) \( \bigl[1\) , \( a - 1\) , \( 0\) , \( -54 a - 125\) , \( -1252 a - 2971\bigr] \) ${y}^2+{x}{y}={x}^{3}+\left(a-1\right){x}^{2}+\left(-54a-125\right){x}-1252a-2971$
588.1-g2 588.1-g \(\Q(\sqrt{33}) \) \( 2^{2} \cdot 3 \cdot 7^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.583174057$ $3.656520471$ 3.712010837 \( \frac{512576216027}{1143072} \) \( \bigl[1\) , \( a - 1\) , \( 0\) , \( -1334 a - 3165\) , \( -46052 a - 109243\bigr] \) ${y}^2+{x}{y}={x}^{3}+\left(a-1\right){x}^{2}+\left(-1334a-3165\right){x}-46052a-109243$
588.1-h1 588.1-h \(\Q(\sqrt{33}) \) \( 2^{2} \cdot 3 \cdot 7^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.291587028$ $3.656520471$ 3.712010837 \( -\frac{33698267}{193536} \) \( \bigl[1\) , \( -a\) , \( 0\) , \( 54 a - 179\) , \( 1252 a - 4223\bigr] \) ${y}^2+{x}{y}={x}^{3}-a{x}^{2}+\left(54a-179\right){x}+1252a-4223$
588.1-h2 588.1-h \(\Q(\sqrt{33}) \) \( 2^{2} \cdot 3 \cdot 7^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.583174057$ $3.656520471$ 3.712010837 \( \frac{512576216027}{1143072} \) \( \bigl[1\) , \( -a\) , \( 0\) , \( 1334 a - 4499\) , \( 46052 a - 155295\bigr] \) ${y}^2+{x}{y}={x}^{3}-a{x}^{2}+\left(1334a-4499\right){x}+46052a-155295$
588.1-i1 588.1-i \(\Q(\sqrt{33}) \) \( 2^{2} \cdot 3 \cdot 7^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $2.783319616$ 2.422568772 \( -\frac{491441498361}{224} a + \frac{4971836940139}{672} \) \( \bigl[1\) , \( 0\) , \( a\) , \( 13 a - 47\) , \( 47 a - 167\bigr] \) ${y}^2+{x}{y}+a{y}={x}^{3}+\left(13a-47\right){x}+47a-167$
588.1-i2 588.1-i \(\Q(\sqrt{33}) \) \( 2^{2} \cdot 3 \cdot 7^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $2.783319616$ 2.422568772 \( \frac{7239390125}{150528} a + \frac{386729003}{150528} \) \( \bigl[1\) , \( a + 1\) , \( 1\) , \( 716 a - 2408\) , \( 17501 a - 59015\bigr] \) ${y}^2+{x}{y}+{y}={x}^{3}+\left(a+1\right){x}^{2}+\left(716a-2408\right){x}+17501a-59015$
588.1-j1 588.1-j \(\Q(\sqrt{33}) \) \( 2^{2} \cdot 3 \cdot 7^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $1.057617394$ $2.486887276$ 1.831418963 \( -\frac{7189057}{16128} \) \( \bigl[1\) , \( -a\) , \( a + 1\) , \( -1480 a - 3508\) , \( -114414 a - 271422\bigr] \) ${y}^2+{x}{y}+\left(a+1\right){y}={x}^{3}-a{x}^{2}+\left(-1480a-3508\right){x}-114414a-271422$
588.1-j2 588.1-j \(\Q(\sqrt{33}) \) \( 2^{2} \cdot 3 \cdot 7^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $2.115234789$ $0.621721819$ 1.831418963 \( \frac{6359387729183}{4218578658} \) \( \bigl[1\) , \( -a\) , \( a + 1\) , \( 142040 a + 336962\) , \( -19036524 a - 45159990\bigr] \) ${y}^2+{x}{y}+\left(a+1\right){y}={x}^{3}-a{x}^{2}+\left(142040a+336962\right){x}-19036524a-45159990$
588.1-j3 588.1-j \(\Q(\sqrt{33}) \) \( 2^{2} \cdot 3 \cdot 7^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1.057617394$ $2.486887276$ 1.831418963 \( \frac{124475734657}{63011844} \) \( \bigl[1\) , \( -a\) , \( a + 1\) , \( -38280 a - 90808\) , \( -2405434 a - 5706366\bigr] \) ${y}^2+{x}{y}+\left(a+1\right){y}={x}^{3}-a{x}^{2}+\left(-38280a-90808\right){x}-2405434a-5706366$
588.1-j4 588.1-j \(\Q(\sqrt{33}) \) \( 2^{2} \cdot 3 \cdot 7^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.528808697$ $2.486887276$ 1.831418963 \( \frac{84448510979617}{933897762} \) \( \bigl[1\) , \( -a\) , \( a + 1\) , \( -336360 a - 797938\) , \( 178585016 a + 423653898\bigr] \) ${y}^2+{x}{y}+\left(a+1\right){y}={x}^{3}-a{x}^{2}+\left(-336360a-797938\right){x}+178585016a+423653898$
588.1-j5 588.1-j \(\Q(\sqrt{33}) \) \( 2^{2} \cdot 3 \cdot 7^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $2.115234789$ $2.486887276$ 1.831418963 \( \frac{65597103937}{63504} \) \( \bigl[1\) , \( -a\) , \( a + 1\) , \( -30920 a - 73348\) , \( -4979294 a - 11812286\bigr] \) ${y}^2+{x}{y}+\left(a+1\right){y}={x}^{3}-a{x}^{2}+\left(-30920a-73348\right){x}-4979294a-11812286$
588.1-j6 588.1-j \(\Q(\sqrt{33}) \) \( 2^{2} \cdot 3 \cdot 7^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $4.230469578$ $0.621721819$ 1.831418963 \( \frac{268498407453697}{252} \) \( \bigl[1\) , \( -a\) , \( a + 1\) , \( -494600 a - 1173328\) , \( -320376194 a - 760022462\bigr] \) ${y}^2+{x}{y}+\left(a+1\right){y}={x}^{3}-a{x}^{2}+\left(-494600a-1173328\right){x}-320376194a-760022462$
588.1-k1 588.1-k \(\Q(\sqrt{33}) \) \( 2^{2} \cdot 3 \cdot 7^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $19.68882810$ 3.427385045 \( -\frac{7239390125}{150528} a + \frac{953264891}{18816} \) \( \bigl[1\) , \( a + 1\) , \( 1\) , \( 26 a - 83\) , \( -125 a + 423\bigr] \) ${y}^2+{x}{y}+{y}={x}^{3}+\left(a+1\right){x}^{2}+\left(26a-83\right){x}-125a+423$
588.1-k2 588.1-k \(\Q(\sqrt{33}) \) \( 2^{2} \cdot 3 \cdot 7^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $19.68882810$ 3.427385045 \( \frac{491441498361}{224} a + \frac{15613894844}{3} \) \( \bigl[1\) , \( -a - 1\) , \( 1\) , \( 551 a - 1853\) , \( -93367 a + 314857\bigr] \) ${y}^2+{x}{y}+{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(551a-1853\right){x}-93367a+314857$
588.1-l1 588.1-l \(\Q(\sqrt{33}) \) \( 2^{2} \cdot 3 \cdot 7^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.142321169$ 2.997767198 \( -\frac{5157875737403123729379833826895}{89772925384654848} a + \frac{17393808016667058105746932807943}{89772925384654848} \) \( \bigl[1\) , \( 0\) , \( a\) , \( 570813 a - 1934400\) , \( -399598458 a + 1347126320\bigr] \) ${y}^2+{x}{y}+a{y}={x}^{3}+\left(570813a-1934400\right){x}-399598458a+1347126320$
588.1-l2 588.1-l \(\Q(\sqrt{33}) \) \( 2^{2} \cdot 3 \cdot 7^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.071160584$ 2.997767198 \( \frac{779828911477214942771}{154308452600236032} \) \( \bigl[1\) , \( -a - 1\) , \( 1\) , \( -1534081 a - 3643442\) , \( -1420871089 a - 3370624103\bigr] \) ${y}^2+{x}{y}+{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(-1534081a-3643442\right){x}-1420871089a-3370624103$
588.1-l3 588.1-l \(\Q(\sqrt{33}) \) \( 2^{2} \cdot 3 \cdot 7^{2} \) 0 $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.142321169$ 2.997767198 \( \frac{661452718394879874611}{36407410163712} \) \( \bigl[1\) , \( -a - 1\) , \( 1\) , \( -1452161 a - 3448882\) , \( -1613444529 a - 3827450983\bigr] \) ${y}^2+{x}{y}+{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(-1452161a-3448882\right){x}-1613444529a-3827450983$
588.1-l4 588.1-l \(\Q(\sqrt{33}) \) \( 2^{2} \cdot 3 \cdot 7^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.071160584$ 2.997767198 \( \frac{5157875737403123729379833826895}{89772925384654848} a + \frac{1529491534907991797045887372631}{11221615673081856} \) \( \bigl[1\) , \( -a - 1\) , \( 1\) , \( 3479655 a - 11735926\) , \( -7295816945 a + 24603525741\bigr] \) ${y}^2+{x}{y}+{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(3479655a-11735926\right){x}-7295816945a+24603525741$
588.1-m1 588.1-m \(\Q(\sqrt{33}) \) \( 2^{2} \cdot 3 \cdot 7^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $1.580678965$ 2.751608890 \( -\frac{101522315347710125}{154140672} a + \frac{42795225991458875}{19267584} \) \( \bigl[1\) , \( a + 1\) , \( 0\) , \( -4468 a - 10599\) , \( 44020852 a + 104429845\bigr] \) ${y}^2+{x}{y}={x}^{3}+\left(a+1\right){x}^{2}+\left(-4468a-10599\right){x}+44020852a+104429845$
588.1-m2 588.1-m \(\Q(\sqrt{33}) \) \( 2^{2} \cdot 3 \cdot 7^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $1.580678965$ 2.751608890 \( \frac{3648707754875}{1660262688} \) \( \bigl[1\) , \( -a - 1\) , \( 0\) , \( -2565 a - 6091\) , \( -51941 a - 123219\bigr] \) ${y}^2+{x}{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(-2565a-6091\right){x}-51941a-123219$
588.1-m3 588.1-m \(\Q(\sqrt{33}) \) \( 2^{2} \cdot 3 \cdot 7^{2} \) 0 $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $3.161357930$ 2.751608890 \( \frac{459206250875}{7375872} \) \( \bigl[1\) , \( -a - 1\) , \( 0\) , \( -1285 a - 3051\) , \( 43739 a + 103757\bigr] \) ${y}^2+{x}{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(-1285a-3051\right){x}+43739a+103757$
588.1-m4 588.1-m \(\Q(\sqrt{33}) \) \( 2^{2} \cdot 3 \cdot 7^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $3.161357930$ 2.751608890 \( \frac{101522315347710125}{154140672} a + \frac{240839492583960875}{154140672} \) \( \bigl[1\) , \( 0\) , \( a + 1\) , \( -23 a - 66\) , \( 563 a - 1268\bigr] \) ${y}^2+{x}{y}+\left(a+1\right){y}={x}^{3}+\left(-23a-66\right){x}+563a-1268$
588.1-n1 588.1-n \(\Q(\sqrt{33}) \) \( 2^{2} \cdot 3 \cdot 7^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $8.664144725$ 3.016468009 \( -\frac{4724901005}{336} a + \frac{15933749821}{336} \) \( \bigl[1\) , \( 0\) , \( a + 1\) , \( 11 a - 39\) , \( 36 a - 126\bigr] \) ${y}^2+{x}{y}+\left(a+1\right){y}={x}^{3}+\left(11a-39\right){x}+36a-126$
588.1-n2 588.1-n \(\Q(\sqrt{33}) \) \( 2^{2} \cdot 3 \cdot 7^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $8.664144725$ 3.016468009 \( \frac{286191179}{43218} \) \( \bigl[1\) , \( -a - 1\) , \( 0\) , \( -109 a - 258\) , \( -763 a - 1810\bigr] \) ${y}^2+{x}{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(-109a-258\right){x}-763a-1810$
588.1-n3 588.1-n \(\Q(\sqrt{33}) \) \( 2^{2} \cdot 3 \cdot 7^{2} \) 0 $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $17.32828945$ 3.016468009 \( \frac{5735339}{588} \) \( \bigl[1\) , \( -a - 1\) , \( 0\) , \( -29 a - 68\) , \( 177 a + 420\bigr] \) ${y}^2+{x}{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(-29a-68\right){x}+177a+420$
588.1-n4 588.1-n \(\Q(\sqrt{33}) \) \( 2^{2} \cdot 3 \cdot 7^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $17.32828945$ 3.016468009 \( \frac{4724901005}{336} a + \frac{700553051}{21} \) \( \bigl[1\) , \( -a - 1\) , \( 0\) , \( -95 a + 326\) , \( 2639 a - 8902\bigr] \) ${y}^2+{x}{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(-95a+326\right){x}+2639a-8902$
  displayed columns for results

  *The rank, regulator and analytic order of Ш are not known for all curves in the database; curves for which these are unknown will not appear in searches specifying one of these quantities.