Properties

Label 2.2.33.1-288.4-l12
Base field \(\Q(\sqrt{33}) \)
Conductor norm \( 288 \)
CM no
Base change no
Q-curve yes
Torsion order \( 2 \)
Rank \( 1 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field \(\Q(\sqrt{33}) \)

Generator \(a\), with minimal polynomial \( x^{2} - x - 8 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([-8, -1, 1]))
 
gp: K = nfinit(Polrev([-8, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-8, -1, 1]);
 

Weierstrass equation

\({y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(61058a-206116\right){x}+11235272a-37889633\)
sage: E = EllipticCurve([K([1,1]),K([-1,-1]),K([1,1]),K([-206116,61058]),K([-37889633,11235272])])
 
gp: E = ellinit([Polrev([1,1]),Polrev([-1,-1]),Polrev([1,1]),Polrev([-206116,61058]),Polrev([-37889633,11235272])], K);
 
magma: E := EllipticCurve([K![1,1],K![-1,-1],K![1,1],K![-206116,61058],K![-37889633,11235272]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((-6a+6)\) = \((-a-2)\cdot(-a+3)^{4}\cdot(-2a+7)^{2}\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 288 \) = \(2\cdot2^{4}\cdot3^{2}\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((-373248a+1368576)\) = \((-a-2)^{9}\cdot(-a+3)^{13}\cdot(-2a+7)^{10}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 247669456896 \) = \(2^{9}\cdot2^{13}\cdot3^{10}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( \frac{2879604455941411323125}{4608} a + \frac{6831231869232063827875}{4608} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(1\)
Generator $\left(-\frac{286163}{289} a + \frac{962613}{289} : -\frac{367412558}{4913} a + \frac{1239097301}{4913} : 1\right)$
Height \(3.0980724586705122051844890728610874713\)
Torsion structure: \(\Z/2\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(-\frac{471}{4} a + \frac{1555}{4} : -\frac{617}{8} a + \frac{2209}{8} : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 1 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(1\)
Regulator: \( 3.0980724586705122051844890728610874713 \)
Period: \( 0.25205128339012060327082966031514736538 \)
Tamagawa product: \( 72 \)  =  \(3^{2}\cdot2\cdot2^{2}\)
Torsion order: \(2\)
Leading coefficient: \( 4.8935723644178569927339251675384177032 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((-a-2)\) \(2\) \(9\) \(I_{9}\) Split multiplicative \(-1\) \(1\) \(9\) \(9\)
\((-a+3)\) \(2\) \(2\) \(I_{5}^{*}\) Additive \(-1\) \(4\) \(13\) \(1\)
\((-2a+7)\) \(3\) \(4\) \(I_{4}^{*}\) Additive \(-1\) \(2\) \(10\) \(4\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B
\(3\) 3B

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2, 3, 4, 6, 9, 12, 18 and 36.
Its isogeny class 288.4-l consists of curves linked by isogenies of degrees dividing 36.

Base change

This elliptic curve is a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.