Properties

Label 2.2.33.1-132.1-a6
Base field \(\Q(\sqrt{33}) \)
Conductor norm \( 132 \)
CM no
Base change yes
Q-curve yes
Torsion order \( 4 \)
Rank \( 1 \)

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Base field \(\Q(\sqrt{33}) \)

Generator \(a\), with minimal polynomial \( x^{2} - x - 8 \); class number \(1\).

Copy content comment:Define the base number field
 
Copy content sage:R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([-8, -1, 1]))
 
Copy content gp:K = nfinit(Polrev([-8, -1, 1]));
 
Copy content magma:R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-8, -1, 1]);
 

Weierstrass equation

\({y}^2+{x}{y}+{y}={x}^{3}-81{x}-284\)
Copy content comment:Define the curve
 
Copy content sage:E = EllipticCurve([K([1,0]),K([0,0]),K([1,0]),K([-81,0]),K([-284,0])])
 
Copy content gp:E = ellinit([Polrev([1,0]),Polrev([0,0]),Polrev([1,0]),Polrev([-81,0]),Polrev([-284,0])], K);
 
Copy content magma:E := EllipticCurve([K![1,0],K![0,0],K![1,0],K![-81,0],K![-284,0]]);
 

This is a global minimal model.

Copy content comment:Test whether it is a global minimal model
 
Copy content sage:E.is_global_minimal_model()
 

Mordell-Weil group structure

\(\Z \oplus \Z/{2}\Z \oplus \Z/{2}\Z\)

Mordell-Weil generators

$P$$\hat{h}(P)$Order
$\left(-\frac{17}{4} a + 9 : -\frac{85}{8} a + 37 : 1\right)$$2.0199722340458257231712299131262316094$$\infty$
$\left(-\frac{11}{4} a + \frac{15}{4} : \frac{11}{8} a - \frac{19}{8} : 1\right)$$0$$2$
$\left(-5 : 2 : 1\right)$$0$$2$

Invariants

Conductor: $\frak{N}$ = \((-4a+2)\) = \((-a-2)\cdot(-a+3)\cdot(-2a+7)\cdot(-4a-9)\)
Copy content comment:Compute the conductor
 
Copy content sage:E.conductor()
 
Copy content gp:ellglobalred(E)[1]
 
Copy content magma:Conductor(E);
 
Conductor norm: $N(\frak{N})$ = \( 132 \) = \(2\cdot2\cdot3\cdot11\)
Copy content comment:Compute the norm of the conductor
 
Copy content sage:E.conductor().norm()
 
Copy content gp:idealnorm(ellglobalred(E)[1])
 
Copy content magma:Norm(Conductor(E));
 
Discriminant: $\Delta$ = $255552$
Discriminant ideal: $\frak{D}_{\mathrm{min}} = (\Delta)$ = \((255552)\) = \((-a-2)^{6}\cdot(-a+3)^{6}\cdot(-2a+7)^{2}\cdot(-4a-9)^{6}\)
Copy content comment:Compute the discriminant
 
Copy content sage:E.discriminant()
 
Copy content gp:E.disc
 
Copy content magma:Discriminant(E);
 
Discriminant norm: $N(\frak{D}_{\mathrm{min}}) = N(\Delta)$ = \( 65306824704 \) = \(2^{6}\cdot2^{6}\cdot3^{2}\cdot11^{6}\)
Copy content comment:Compute the norm of the discriminant
 
Copy content sage:E.discriminant().norm()
 
Copy content gp:norm(E.disc)
 
Copy content magma:Norm(Discriminant(E));
 
j-invariant: $j$ = \( \frac{57736239625}{255552} \)
Copy content comment:Compute the j-invariant
 
Copy content sage:E.j_invariant()
 
Copy content gp:E.j
 
Copy content magma:jInvariant(E);
 
Endomorphism ring: $\mathrm{End}(E)$ = \(\Z\)   
Geometric endomorphism ring: $\mathrm{End}(E_{\overline{\Q}})$ = \(\Z\)    (no potential complex multiplication)
Copy content comment:Test for Complex Multiplication
 
Copy content sage:E.has_cm(), E.cm_discriminant()
 
Copy content magma:HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{ST}(E)$ = $\mathrm{SU}(2)$

BSD invariants

Analytic rank: $r_{\mathrm{an}}$= \( 1 \)
Copy content comment:Compute the Mordell-Weil rank
 
Copy content sage:E.rank()
 
Copy content magma:Rank(E);
 
Mordell-Weil rank: $r$ = \(1\)
Regulator: $\mathrm{Reg}(E/K)$ \( 2.0199722340458257231712299131262316094 \)
Néron-Tate Regulator: $\mathrm{Reg}_{\mathrm{NT}}(E/K)$ \( 4.0399444680916514463424598262524632188 \)
Global period: $\Omega(E/K)$ \( 2.5414191655043194547370295931007691225 \)
Tamagawa product: $\prod_{\frak{p}}c_{\frak{p}}$= \( 16 \)  =  \(2\cdot2\cdot2\cdot2\)
Torsion order: $\#E(K)_{\mathrm{tor}}$= \(4\)
Special value: $L^{(r)}(E/K,1)/r!$ \( 1.7872887686182374644443623938471522604 \)
Analytic order of Ш: Ш${}_{\mathrm{an}}$= \( 1 \) (rounded)

BSD formula

$$\begin{aligned}1.787288769 \approx L'(E/K,1) & \overset{?}{=} \frac{ \# ะจ(E/K) \cdot \Omega(E/K) \cdot \mathrm{Reg}_{\mathrm{NT}}(E/K) \cdot \prod_{\mathfrak{p}} c_{\mathfrak{p}} } { \#E(K)_{\mathrm{tor}}^2 \cdot \left|d_K\right|^{1/2} } \\ & \approx \frac{ 1 \cdot 2.541419 \cdot 4.039944 \cdot 16 } { {4^2 \cdot 5.744563} } \\ & \approx 1.787288769 \end{aligned}$$

Local data at primes of bad reduction

Copy content comment:Compute the local reduction data at primes of bad reduction
 
Copy content sage:E.local_data()
 
Copy content magma:LocalInformation(E);
 

This elliptic curve is semistable. There are 4 primes $\frak{p}$ of bad reduction.

$\mathfrak{p}$ $N(\mathfrak{p})$ Tamagawa number Kodaira symbol Reduction type Root number \(\mathrm{ord}_{\mathfrak{p}}(\mathfrak{N}\)) \(\mathrm{ord}_{\mathfrak{p}}(\mathfrak{D}_{\mathrm{min}}\)) \(\mathrm{ord}_{\mathfrak{p}}(\mathrm{den}(j))\)
\((-a-2)\) \(2\) \(2\) \(I_{6}\) Non-split multiplicative \(1\) \(1\) \(6\) \(6\)
\((-a+3)\) \(2\) \(2\) \(I_{6}\) Non-split multiplicative \(1\) \(1\) \(6\) \(6\)
\((-2a+7)\) \(3\) \(2\) \(I_{2}\) Split multiplicative \(-1\) \(1\) \(2\) \(2\)
\((-4a-9)\) \(11\) \(2\) \(I_{6}\) Non-split multiplicative \(1\) \(1\) \(6\) \(6\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2Cs
\(3\) 3B.1.2

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2, 3 and 6.
Its isogeny class 132.1-a consists of curves linked by isogenies of degrees dividing 12.

Base change

This elliptic curve is a \(\Q\)-curve. It is the base change of the following 2 elliptic curves:

Base field Curve
\(\Q\) 66.a1
\(\Q\) 2178.b1