Base field \(\Q(\sqrt{7}) \)
Generator \(a\), with minimal polynomial \( x^{2} - 7 \); class number \(1\).
Weierstrass equation
This is a global minimal model.
Mordell-Weil group structure
\(\Z/{2}\Z\)
Mordell-Weil generators
| $P$ | $\hat{h}(P)$ | Order |
|---|---|---|
| $\left(-\frac{3}{2} a - 3 : \frac{9}{4} a + \frac{27}{4} : 1\right)$ | $0$ | $2$ |
Invariants
| Conductor: | $\frak{N}$ | = | \((8a-32)\) | = | \((a+3)^{6}\cdot(-a-2)^{2}\) |
|
| |||||
| Conductor norm: | $N(\frak{N})$ | = | \( 576 \) | = | \(2^{6}\cdot3^{2}\) |
|
| |||||
| Discriminant: | $\Delta$ | = | $32a+232$ | ||
| Discriminant ideal: | $\frak{D}_{\mathrm{min}} = (\Delta)$ | = | \((32a+232)\) | = | \((a+3)^{6}\cdot(-a-2)^{6}\) |
|
| |||||
| Discriminant norm: | $N(\frak{D}_{\mathrm{min}}) = N(\Delta)$ | = | \( 46656 \) | = | \(2^{6}\cdot3^{6}\) |
|
| |||||
| j-invariant: | $j$ | = | \( 287496 \) | ||
|
| |||||
| Endomorphism ring: | $\mathrm{End}(E)$ | = | \(\Z\) | ||
| Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z[\sqrt{-4}]\) (potential complex multiplication) | ||
|
| |||||
| Sato-Tate group: | $\mathrm{ST}(E)$ | = | $N(\mathrm{U}(1))$ | ||
BSD invariants
| Analytic rank: | $r_{\mathrm{an}}$ | = | \( 0 \) |
|
|
|||
| Mordell-Weil rank: | $r$ | = | \(0\) |
| Regulator: | $\mathrm{Reg}(E/K)$ | = | \( 1 \) |
| Néron-Tate Regulator: | $\mathrm{Reg}_{\mathrm{NT}}(E/K)$ | = | \( 1 \) |
| Global period: | $\Omega(E/K)$ | ≈ | \( 15.877561531051038665265072133025860810 \) |
| Tamagawa product: | $\prod_{\frak{p}}c_{\frak{p}}$ | = | \( 2 \) = \(1\cdot2\) |
| Torsion order: | $\#E(K)_{\mathrm{tor}}$ | = | \(2\) |
| Special value: | $L^{(r)}(E/K,1)/r!$ | ≈ | \( 1.5002885441888212082697528449756041977 \) |
| Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | = | \( 1 \) (rounded) |
BSD formula
$$\begin{aligned}1.500288544 \approx L(E/K,1) & \overset{?}{=} \frac{ \# ะจ(E/K) \cdot \Omega(E/K) \cdot \mathrm{Reg}_{\mathrm{NT}}(E/K) \cdot \prod_{\mathfrak{p}} c_{\mathfrak{p}} } { \#E(K)_{\mathrm{tor}}^2 \cdot \left|d_K\right|^{1/2} } \\ & \approx \frac{ 1 \cdot 15.877562 \cdot 1 \cdot 2 } { {2^2 \cdot 5.291503} } \\ & \approx 1.500288544 \end{aligned}$$
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 2 primes $\frak{p}$ of bad reduction.
| $\mathfrak{p}$ | $N(\mathfrak{p})$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | \(\mathrm{ord}_{\mathfrak{p}}(\mathfrak{N}\)) | \(\mathrm{ord}_{\mathfrak{p}}(\mathfrak{D}_{\mathrm{min}}\)) | \(\mathrm{ord}_{\mathfrak{p}}(\mathrm{den}(j))\) |
|---|---|---|---|---|---|---|---|---|
| \((a+3)\) | \(2\) | \(1\) | \(II\) | Additive | \(-1\) | \(6\) | \(6\) | \(0\) |
| \((-a-2)\) | \(3\) | \(2\) | \(I_0^{*}\) | Additive | \(-1\) | \(2\) | \(6\) | \(0\) |
Galois Representations
The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) .
The image is a Borel subgroup if \(p=2\), the normalizer of a split Cartan subgroup if \(\left(\frac{ -1 }{p}\right)=+1\) or the normalizer of a nonsplit Cartan subgroup if \(\left(\frac{ -1 }{p}\right)=-1\).
Isogenies and isogeny class
This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\)
2 and 4.
Its isogeny class
576.3-a
consists of curves linked by isogenies of
degrees dividing 4.
Base change
This elliptic curve is a \(\Q\)-curve.
It is not the base change of an elliptic curve defined over any subfield.