Learn more

Refine search


Results (1-50 of 5064 matches)

Next   displayed columns for results
Label Class Base field Conductor norm Rank Torsion CM Sato-Tate Regulator Period Leading coeff j-invariant Weierstrass coefficients Weierstrass equation
1.1-a1 1.1-a \(\Q(\sqrt{7}) \) \( 1 \) 0 $\Z/4\Z$ $-7$ $N(\mathrm{U}(1))$ $1$ $26.16385905$ 0.309031537 \( -3375 \) \( \bigl[1\) , \( -1\) , \( 1\) , \( -15 a - 40\) , \( 67 a + 177\bigr] \) ${y}^2+{x}{y}+{y}={x}^{3}-{x}^{2}+\left(-15a-40\right){x}+67a+177$
1.1-a2 1.1-a \(\Q(\sqrt{7}) \) \( 1 \) 0 $\Z/4\Z$ $-7$ $N(\mathrm{U}(1))$ $1$ $26.16385905$ 0.309031537 \( -3375 \) \( \bigl[1\) , \( -1\) , \( 1\) , \( 15 a - 40\) , \( -67 a + 177\bigr] \) ${y}^2+{x}{y}+{y}={x}^{3}-{x}^{2}+\left(15a-40\right){x}-67a+177$
1.1-a3 1.1-a \(\Q(\sqrt{7}) \) \( 1 \) 0 $\Z/2\Z$ $-112$ $N(\mathrm{U}(1))$ $1$ $6.540964764$ 0.309031537 \( -51954490735875 a + 137458661985000 \) \( \bigl[1\) , \( -1\) , \( 1\) , \( -270 a - 715\) , \( 3223 a + 8527\bigr] \) ${y}^2+{x}{y}+{y}={x}^{3}-{x}^{2}+\left(-270a-715\right){x}+3223a+8527$
1.1-a4 1.1-a \(\Q(\sqrt{7}) \) \( 1 \) 0 $\Z/4\Z$ $-112$ $N(\mathrm{U}(1))$ $1$ $26.16385905$ 0.309031537 \( -51954490735875 a + 137458661985000 \) \( \bigl[a\) , \( -1\) , \( a\) , \( -270 a - 718\) , \( -3223 a - 8529\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^{3}-{x}^{2}+\left(-270a-718\right){x}-3223a-8529$
1.1-a5 1.1-a \(\Q(\sqrt{7}) \) \( 1 \) 0 $\Z/2\Z\oplus\Z/2\Z$ $-28$ $N(\mathrm{U}(1))$ $1$ $26.16385905$ 0.309031537 \( 16581375 \) \( \bigl[a\) , \( -1\) , \( a\) , \( -255 a - 678\) , \( -3669 a - 9709\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^{3}-{x}^{2}+\left(-255a-678\right){x}-3669a-9709$
1.1-a6 1.1-a \(\Q(\sqrt{7}) \) \( 1 \) 0 $\Z/2\Z\oplus\Z/2\Z$ $-28$ $N(\mathrm{U}(1))$ $1$ $26.16385905$ 0.309031537 \( 16581375 \) \( \bigl[a\) , \( -1\) , \( a\) , \( 255 a - 678\) , \( 3669 a - 9709\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^{3}-{x}^{2}+\left(255a-678\right){x}+3669a-9709$
1.1-a7 1.1-a \(\Q(\sqrt{7}) \) \( 1 \) 0 $\Z/2\Z$ $-112$ $N(\mathrm{U}(1))$ $1$ $6.540964764$ 0.309031537 \( 51954490735875 a + 137458661985000 \) \( \bigl[1\) , \( -1\) , \( 1\) , \( 270 a - 715\) , \( -3223 a + 8527\bigr] \) ${y}^2+{x}{y}+{y}={x}^{3}-{x}^{2}+\left(270a-715\right){x}-3223a+8527$
1.1-a8 1.1-a \(\Q(\sqrt{7}) \) \( 1 \) 0 $\Z/4\Z$ $-112$ $N(\mathrm{U}(1))$ $1$ $26.16385905$ 0.309031537 \( 51954490735875 a + 137458661985000 \) \( \bigl[a\) , \( -1\) , \( a\) , \( 270 a - 718\) , \( 3223 a - 8529\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^{3}-{x}^{2}+\left(270a-718\right){x}+3223a-8529$
9.2-a1 9.2-a \(\Q(\sqrt{7}) \) \( 3^{2} \) 0 $\Z/2\Z$ $-4$ $N(\mathrm{U}(1))$ $1$ $17.06155021$ 1.612164958 \( 1728 \) \( \bigl[a + 1\) , \( a + 1\) , \( a\) , \( 2 a + 5\) , \( 2 a + 3\bigr] \) ${y}^2+\left(a+1\right){x}{y}+a{y}={x}^{3}+\left(a+1\right){x}^{2}+\left(2a+5\right){x}+2a+3$
9.2-a2 9.2-a \(\Q(\sqrt{7}) \) \( 3^{2} \) 0 $\Z/2\Z$ $-4$ $N(\mathrm{U}(1))$ $1$ $17.06155021$ 1.612164958 \( 1728 \) \( \bigl[a + 1\) , \( a + 1\) , \( a\) , \( 54 a + 141\) , \( 122 a + 321\bigr] \) ${y}^2+\left(a+1\right){x}{y}+a{y}={x}^{3}+\left(a+1\right){x}^{2}+\left(54a+141\right){x}+122a+321$
9.3-a1 9.3-a \(\Q(\sqrt{7}) \) \( 3^{2} \) 0 $\Z/2\Z$ $-4$ $N(\mathrm{U}(1))$ $1$ $17.06155021$ 1.612164958 \( 1728 \) \( \bigl[a + 1\) , \( a + 1\) , \( 1\) , \( 3 a + 8\) , \( 3 a + 8\bigr] \) ${y}^2+\left(a+1\right){x}{y}+{y}={x}^{3}+\left(a+1\right){x}^{2}+\left(3a+8\right){x}+3a+8$
9.3-a2 9.3-a \(\Q(\sqrt{7}) \) \( 3^{2} \) 0 $\Z/2\Z$ $-4$ $N(\mathrm{U}(1))$ $1$ $17.06155021$ 1.612164958 \( 1728 \) \( \bigl[a + 1\) , \( a + 1\) , \( 1\) , \( -49 a + 144\) , \( 19 a - 38\bigr] \) ${y}^2+\left(a+1\right){x}{y}+{y}={x}^{3}+\left(a+1\right){x}^{2}+\left(-49a+144\right){x}+19a-38$
14.1-a1 14.1-a \(\Q(\sqrt{7}) \) \( 2 \cdot 7 \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $7.027708105$ 1.328111995 \( -\frac{548347731625}{1835008} \) \( \bigl[a\) , \( 1\) , \( 0\) , \( -168\) , \( 704\bigr] \) ${y}^2+a{x}{y}={x}^{3}+{x}^{2}-168{x}+704$
14.1-a2 14.1-a \(\Q(\sqrt{7}) \) \( 2 \cdot 7 \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $7.027708105$ 1.328111995 \( -\frac{15625}{28} \) \( \bigl[a\) , \( 1\) , \( 0\) , \( 2\) , \( 0\bigr] \) ${y}^2+a{x}{y}={x}^{3}+{x}^{2}+2{x}$
14.1-a3 14.1-a \(\Q(\sqrt{7}) \) \( 2 \cdot 7 \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $7.027708105$ 1.328111995 \( \frac{9938375}{21952} \) \( \bigl[a\) , \( 1\) , \( 0\) , \( 7\) , \( 11\bigr] \) ${y}^2+a{x}{y}={x}^{3}+{x}^{2}+7{x}+11$
14.1-a4 14.1-a \(\Q(\sqrt{7}) \) \( 2 \cdot 7 \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $7.027708105$ 1.328111995 \( \frac{4956477625}{941192} \) \( \bigl[a\) , \( 1\) , \( 0\) , \( -33\) , \( 35\bigr] \) ${y}^2+a{x}{y}={x}^{3}+{x}^{2}-33{x}+35$
14.1-a5 14.1-a \(\Q(\sqrt{7}) \) \( 2 \cdot 7 \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $7.027708105$ 1.328111995 \( \frac{128787625}{98} \) \( \bigl[a\) , \( 1\) , \( 0\) , \( -8\) , \( -22\bigr] \) ${y}^2+a{x}{y}={x}^{3}+{x}^{2}-8{x}-22$
14.1-a6 14.1-a \(\Q(\sqrt{7}) \) \( 2 \cdot 7 \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $7.027708105$ 1.328111995 \( \frac{2251439055699625}{25088} \) \( \bigl[a\) , \( 1\) , \( 0\) , \( -2728\) , \( 52416\bigr] \) ${y}^2+a{x}{y}={x}^{3}+{x}^{2}-2728{x}+52416$
14.1-b1 14.1-b \(\Q(\sqrt{7}) \) \( 2 \cdot 7 \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $3.507207167$ $0.436190660$ 0.578214212 \( -\frac{548347731625}{1835008} \) \( \bigl[1\) , \( 0\) , \( 1\) , \( -171\) , \( -874\bigr] \) ${y}^2+{x}{y}+{y}={x}^{3}-171{x}-874$
14.1-b2 14.1-b \(\Q(\sqrt{7}) \) \( 2 \cdot 7 \) $1$ $\Z/6\Z$ $\mathrm{SU}(2)$ $0.389689685$ $35.33144352$ 0.578214212 \( -\frac{15625}{28} \) \( \bigl[1\) , \( 0\) , \( 1\) , \( -1\) , \( 0\bigr] \) ${y}^2+{x}{y}+{y}={x}^{3}-{x}$
14.1-b3 14.1-b \(\Q(\sqrt{7}) \) \( 2 \cdot 7 \) $1$ $\Z/6\Z$ $\mathrm{SU}(2)$ $1.169069055$ $3.925715946$ 0.578214212 \( \frac{9938375}{21952} \) \( \bigl[1\) , \( 0\) , \( 1\) , \( 4\) , \( -6\bigr] \) ${y}^2+{x}{y}+{y}={x}^{3}+4{x}-6$
14.1-b4 14.1-b \(\Q(\sqrt{7}) \) \( 2 \cdot 7 \) $1$ $\Z/6\Z$ $\mathrm{SU}(2)$ $0.584534527$ $3.925715946$ 0.578214212 \( \frac{4956477625}{941192} \) \( \bigl[1\) , \( 0\) , \( 1\) , \( -36\) , \( -70\bigr] \) ${y}^2+{x}{y}+{y}={x}^{3}-36{x}-70$
14.1-b5 14.1-b \(\Q(\sqrt{7}) \) \( 2 \cdot 7 \) $1$ $\Z/6\Z$ $\mathrm{SU}(2)$ $0.194844842$ $35.33144352$ 0.578214212 \( \frac{128787625}{98} \) \( \bigl[1\) , \( 0\) , \( 1\) , \( -11\) , \( 12\bigr] \) ${y}^2+{x}{y}+{y}={x}^{3}-11{x}+12$
14.1-b6 14.1-b \(\Q(\sqrt{7}) \) \( 2 \cdot 7 \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $1.753603583$ $0.436190660$ 0.578214212 \( \frac{2251439055699625}{25088} \) \( \bigl[1\) , \( 0\) , \( 1\) , \( -2731\) , \( -55146\bigr] \) ${y}^2+{x}{y}+{y}={x}^{3}-2731{x}-55146$
16.1-a1 16.1-a \(\Q(\sqrt{7}) \) \( 2^{4} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $36.50601953$ 1.724747304 \( -3264 a - 6928 \) \( \bigl[a + 1\) , \( a\) , \( a + 1\) , \( 0\) , \( -1\bigr] \) ${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+a{x}^{2}-1$
16.1-a2 16.1-a \(\Q(\sqrt{7}) \) \( 2^{4} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $36.50601953$ 1.724747304 \( 3264 a - 6928 \) \( \bigl[a + 1\) , \( a\) , \( 0\) , \( 3 a + 4\) , \( 8\bigr] \) ${y}^2+\left(a+1\right){x}{y}={x}^{3}+a{x}^{2}+\left(3a+4\right){x}+8$
16.1-a3 16.1-a \(\Q(\sqrt{7}) \) \( 2^{4} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $36.50601953$ 1.724747304 \( -50184204 a + 132776672 \) \( \bigl[a + 1\) , \( a\) , \( 0\) , \( 18 a - 36\) , \( -66 a + 182\bigr] \) ${y}^2+\left(a+1\right){x}{y}={x}^{3}+a{x}^{2}+\left(18a-36\right){x}-66a+182$
16.1-a4 16.1-a \(\Q(\sqrt{7}) \) \( 2^{4} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $36.50601953$ 1.724747304 \( 50184204 a + 132776672 \) \( \bigl[a + 1\) , \( a\) , \( a + 1\) , \( -15 a - 40\) , \( 26 a + 68\bigr] \) ${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+a{x}^{2}+\left(-15a-40\right){x}+26a+68$
16.1-b1 16.1-b \(\Q(\sqrt{7}) \) \( 2^{4} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $11.49111446$ 0.542904127 \( -3264 a - 6928 \) \( \bigl[a + 1\) , \( a - 1\) , \( a + 1\) , \( -a - 1\) , \( -2 a - 7\bigr] \) ${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+\left(a-1\right){x}^{2}+\left(-a-1\right){x}-2a-7$
16.1-b2 16.1-b \(\Q(\sqrt{7}) \) \( 2^{4} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $11.49111446$ 0.542904127 \( 3264 a - 6928 \) \( \bigl[a + 1\) , \( a - 1\) , \( 0\) , \( 2 a + 3\) , \( a + 2\bigr] \) ${y}^2+\left(a+1\right){x}{y}={x}^{3}+\left(a-1\right){x}^{2}+\left(2a+3\right){x}+a+2$
16.1-b3 16.1-b \(\Q(\sqrt{7}) \) \( 2^{4} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $11.49111446$ 0.542904127 \( -50184204 a + 132776672 \) \( \bigl[a + 1\) , \( a - 1\) , \( 0\) , \( 17 a - 37\) , \( 42 a - 107\bigr] \) ${y}^2+\left(a+1\right){x}{y}={x}^{3}+\left(a-1\right){x}^{2}+\left(17a-37\right){x}+42a-107$
16.1-b4 16.1-b \(\Q(\sqrt{7}) \) \( 2^{4} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $11.49111446$ 0.542904127 \( 50184204 a + 132776672 \) \( \bigl[a + 1\) , \( a - 1\) , \( a + 1\) , \( -16 a - 41\) , \( -83 a - 221\bigr] \) ${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+\left(a-1\right){x}^{2}+\left(-16a-41\right){x}-83a-221$
18.1-a1 18.1-a \(\Q(\sqrt{7}) \) \( 2 \cdot 3^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.531367511$ 1.606704330 \( -\frac{22026189082216125793}{3706040377703682} a - \frac{54626740869226485845}{3706040377703682} \) \( \bigl[a\) , \( a - 1\) , \( a + 1\) , \( -6732 a + 17809\) , \( 429164 a - 1135465\bigr] \) ${y}^2+a{x}{y}+\left(a+1\right){y}={x}^{3}+\left(a-1\right){x}^{2}+\left(-6732a+17809\right){x}+429164a-1135465$
18.1-a2 18.1-a \(\Q(\sqrt{7}) \) \( 2 \cdot 3^{2} \) 0 $\Z/8\Z$ $\mathrm{SU}(2)$ $1$ $8.501880177$ 1.606704330 \( \frac{4913}{1296} \) \( \bigl[1\) , \( a - 1\) , \( a + 1\) , \( 16 a + 47\) , \( -1313 a - 3476\bigr] \) ${y}^2+{x}{y}+\left(a+1\right){y}={x}^{3}+\left(a-1\right){x}^{2}+\left(16a+47\right){x}-1313a-3476$
18.1-a3 18.1-a \(\Q(\sqrt{7}) \) \( 2 \cdot 3^{2} \) 0 $\Z/4\Z$ $\mathrm{SU}(2)$ $1$ $2.125470044$ 1.606704330 \( \frac{22026189082216125793}{3706040377703682} a - \frac{54626740869226485845}{3706040377703682} \) \( \bigl[1\) , \( a - 1\) , \( a + 1\) , \( 6731 a + 17812\) , \( 429164 a + 1135461\bigr] \) ${y}^2+{x}{y}+\left(a+1\right){y}={x}^{3}+\left(a-1\right){x}^{2}+\left(6731a+17812\right){x}+429164a+1135461$
18.1-a4 18.1-a \(\Q(\sqrt{7}) \) \( 2 \cdot 3^{2} \) 0 $\Z/2\Z\oplus\Z/4\Z$ $\mathrm{SU}(2)$ $1$ $8.501880177$ 1.606704330 \( -\frac{15840177853915205}{86093442} a + \frac{20954710660855016}{43046721} \) \( \bigl[1\) , \( a - 1\) , \( a + 1\) , \( -2274 a - 6013\) , \( 59627 a + 157758\bigr] \) ${y}^2+{x}{y}+\left(a+1\right){y}={x}^{3}+\left(a-1\right){x}^{2}+\left(-2274a-6013\right){x}+59627a+157758$
18.1-a5 18.1-a \(\Q(\sqrt{7}) \) \( 2 \cdot 3^{2} \) 0 $\Z/2\Z\oplus\Z/4\Z$ $\mathrm{SU}(2)$ $1$ $8.501880177$ 1.606704330 \( \frac{838561807}{26244} \) \( \bigl[1\) , \( a - 1\) , \( a + 1\) , \( -944 a - 2493\) , \( -25533 a - 67556\bigr] \) ${y}^2+{x}{y}+\left(a+1\right){y}={x}^{3}+\left(a-1\right){x}^{2}+\left(-944a-2493\right){x}-25533a-67556$
18.1-a6 18.1-a \(\Q(\sqrt{7}) \) \( 2 \cdot 3^{2} \) 0 $\Z/4\Z$ $\mathrm{SU}(2)$ $1$ $8.501880177$ 1.606704330 \( -\frac{2350503708439404473473}{13122} a + \frac{6218848268321376696725}{13122} \) \( \bigl[1\) , \( a - 1\) , \( a + 1\) , \( -32559 a - 86158\) , \( 5180690 a + 13706871\bigr] \) ${y}^2+{x}{y}+\left(a+1\right){y}={x}^{3}+\left(a-1\right){x}^{2}+\left(-32559a-86158\right){x}+5180690a+13706871$
18.1-a7 18.1-a \(\Q(\sqrt{7}) \) \( 2 \cdot 3^{2} \) 0 $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $2.125470044$ 1.606704330 \( \frac{15840177853915205}{86093442} a + \frac{20954710660855016}{43046721} \) \( \bigl[a\) , \( a - 1\) , \( a + 1\) , \( 2273 a - 6016\) , \( 59627 a - 157762\bigr] \) ${y}^2+a{x}{y}+\left(a+1\right){y}={x}^{3}+\left(a-1\right){x}^{2}+\left(2273a-6016\right){x}+59627a-157762$
18.1-a8 18.1-a \(\Q(\sqrt{7}) \) \( 2 \cdot 3^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.531367511$ 1.606704330 \( \frac{2350503708439404473473}{13122} a + \frac{6218848268321376696725}{13122} \) \( \bigl[a\) , \( a - 1\) , \( a + 1\) , \( 32558 a - 86161\) , \( 5180690 a - 13706875\bigr] \) ${y}^2+a{x}{y}+\left(a+1\right){y}={x}^{3}+\left(a-1\right){x}^{2}+\left(32558a-86161\right){x}+5180690a-13706875$
18.1-b1 18.1-b \(\Q(\sqrt{7}) \) \( 2 \cdot 3^{2} \) 0 $\Z/4\Z$ $\mathrm{SU}(2)$ $1$ $2.125470044$ 1.606704330 \( -\frac{22026189082216125793}{3706040377703682} a - \frac{54626740869226485845}{3706040377703682} \) \( \bigl[1\) , \( -a - 1\) , \( a + 1\) , \( -6732 a + 17812\) , \( -429165 a + 1135461\bigr] \) ${y}^2+{x}{y}+\left(a+1\right){y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(-6732a+17812\right){x}-429165a+1135461$
18.1-b2 18.1-b \(\Q(\sqrt{7}) \) \( 2 \cdot 3^{2} \) 0 $\Z/8\Z$ $\mathrm{SU}(2)$ $1$ $8.501880177$ 1.606704330 \( \frac{4913}{1296} \) \( \bigl[a\) , \( -a - 1\) , \( a + 1\) , \( 16 a + 44\) , \( 1312 a + 3472\bigr] \) ${y}^2+a{x}{y}+\left(a+1\right){y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(16a+44\right){x}+1312a+3472$
18.1-b3 18.1-b \(\Q(\sqrt{7}) \) \( 2 \cdot 3^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.531367511$ 1.606704330 \( \frac{22026189082216125793}{3706040377703682} a - \frac{54626740869226485845}{3706040377703682} \) \( \bigl[a\) , \( -a - 1\) , \( a + 1\) , \( 6731 a + 17809\) , \( -429165 a - 1135465\bigr] \) ${y}^2+a{x}{y}+\left(a+1\right){y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(6731a+17809\right){x}-429165a-1135465$
18.1-b4 18.1-b \(\Q(\sqrt{7}) \) \( 2 \cdot 3^{2} \) 0 $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $2.125470044$ 1.606704330 \( -\frac{15840177853915205}{86093442} a + \frac{20954710660855016}{43046721} \) \( \bigl[a\) , \( -a - 1\) , \( a + 1\) , \( -2274 a - 6016\) , \( -59628 a - 157762\bigr] \) ${y}^2+a{x}{y}+\left(a+1\right){y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(-2274a-6016\right){x}-59628a-157762$
18.1-b5 18.1-b \(\Q(\sqrt{7}) \) \( 2 \cdot 3^{2} \) 0 $\Z/2\Z\oplus\Z/4\Z$ $\mathrm{SU}(2)$ $1$ $8.501880177$ 1.606704330 \( \frac{838561807}{26244} \) \( \bigl[a\) , \( -a - 1\) , \( a + 1\) , \( -944 a - 2496\) , \( 25532 a + 67552\bigr] \) ${y}^2+a{x}{y}+\left(a+1\right){y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(-944a-2496\right){x}+25532a+67552$
18.1-b6 18.1-b \(\Q(\sqrt{7}) \) \( 2 \cdot 3^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.531367511$ 1.606704330 \( -\frac{2350503708439404473473}{13122} a + \frac{6218848268321376696725}{13122} \) \( \bigl[a\) , \( -a - 1\) , \( a + 1\) , \( -32559 a - 86161\) , \( -5180691 a - 13706875\bigr] \) ${y}^2+a{x}{y}+\left(a+1\right){y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(-32559a-86161\right){x}-5180691a-13706875$
18.1-b7 18.1-b \(\Q(\sqrt{7}) \) \( 2 \cdot 3^{2} \) 0 $\Z/2\Z\oplus\Z/4\Z$ $\mathrm{SU}(2)$ $1$ $8.501880177$ 1.606704330 \( \frac{15840177853915205}{86093442} a + \frac{20954710660855016}{43046721} \) \( \bigl[1\) , \( -a - 1\) , \( a + 1\) , \( 2273 a - 6013\) , \( -59628 a + 157758\bigr] \) ${y}^2+{x}{y}+\left(a+1\right){y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(2273a-6013\right){x}-59628a+157758$
18.1-b8 18.1-b \(\Q(\sqrt{7}) \) \( 2 \cdot 3^{2} \) 0 $\Z/4\Z$ $\mathrm{SU}(2)$ $1$ $8.501880177$ 1.606704330 \( \frac{2350503708439404473473}{13122} a + \frac{6218848268321376696725}{13122} \) \( \bigl[1\) , \( -a - 1\) , \( a + 1\) , \( 32558 a - 86158\) , \( -5180691 a + 13706871\bigr] \) ${y}^2+{x}{y}+\left(a+1\right){y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(32558a-86158\right){x}-5180691a+13706871$
18.2-a1 18.2-a \(\Q(\sqrt{7}) \) \( 2 \cdot 3^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $10.54590844$ 1.992989364 \( -\frac{275587}{1458} a + \frac{289048}{729} \) \( \bigl[a\) , \( -a\) , \( 1\) , \( -6 a - 8\) , \( 34 a + 93\bigr] \) ${y}^2+a{x}{y}+{y}={x}^{3}-a{x}^{2}+\left(-6a-8\right){x}+34a+93$
18.2-a2 18.2-a \(\Q(\sqrt{7}) \) \( 2 \cdot 3^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $3.515302815$ 1.992989364 \( \frac{1500083}{72} a - \frac{495212}{9} \) \( \bigl[a\) , \( -a\) , \( a\) , \( 74 a - 199\) , \( 691 a - 1830\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^{3}-a{x}^{2}+\left(74a-199\right){x}+691a-1830$
Next   displayed columns for results

  *The rank, regulator and analytic order of Ш are not known for all curves in the database; curves for which these are unknown will not appear in searches specifying one of these quantities.