Learn more

Refine search


Results (48 matches)

  displayed columns for results
Label Class Base field Conductor norm Rank Torsion CM Sato-Tate Regulator Period Leading coeff j-invariant Weierstrass coefficients Weierstrass equation
567.1-a1 567.1-a \(\Q(\sqrt{7}) \) \( 3^{4} \cdot 7 \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $2.566767726$ $1.735260738$ 6.733832077 \( -\frac{422830592}{45927} a + \frac{1117795136}{45927} \) \( \bigl[a + 1\) , \( a + 1\) , \( 1\) , \( 40 a - 95\) , \( 189 a - 520\bigr] \) ${y}^2+\left(a+1\right){x}{y}+{y}={x}^{3}+\left(a+1\right){x}^{2}+\left(40a-95\right){x}+189a-520$
567.1-a2 567.1-a \(\Q(\sqrt{7}) \) \( 3^{4} \cdot 7 \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $5.133535453$ $1.735260738$ 6.733832077 \( \frac{108334592}{3969} a + \frac{286626496}{3969} \) \( \bigl[a + 1\) , \( a + 1\) , \( 1\) , \( -122 a + 337\) , \( 311067 a - 822994\bigr] \) ${y}^2+\left(a+1\right){x}{y}+{y}={x}^{3}+\left(a+1\right){x}^{2}+\left(-122a+337\right){x}+311067a-822994$
567.1-b1 567.1-b \(\Q(\sqrt{7}) \) \( 3^{4} \cdot 7 \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $2.751645710$ 1.040024320 \( -\frac{224768}{7} a + \frac{580672}{7} \) \( \bigl[a + 1\) , \( a + 1\) , \( a\) , \( -53 a - 143\) , \( -629 a - 1666\bigr] \) ${y}^2+\left(a+1\right){x}{y}+a{y}={x}^{3}+\left(a+1\right){x}^{2}+\left(-53a-143\right){x}-629a-1666$
567.1-b2 567.1-b \(\Q(\sqrt{7}) \) \( 3^{4} \cdot 7 \) 0 $\Z/6\Z$ $\mathrm{SU}(2)$ $1$ $8.254937131$ 1.040024320 \( -\frac{1204736}{343} a + \frac{3558976}{343} \) \( \bigl[a + 1\) , \( a + 1\) , \( a\) , \( 148 a - 380\) , \( -1528 a + 4054\bigr] \) ${y}^2+\left(a+1\right){x}{y}+a{y}={x}^{3}+\left(a+1\right){x}^{2}+\left(148a-380\right){x}-1528a+4054$
567.1-b3 567.1-b \(\Q(\sqrt{7}) \) \( 3^{4} \cdot 7 \) 0 $\Z/6\Z$ $\mathrm{SU}(2)$ $1$ $16.50987426$ 1.040024320 \( -\frac{3312820736}{49} a + \frac{1252147264}{7} \) \( \bigl[a + 1\) , \( a + 1\) , \( 1\) , \( -8 a - 32\) , \( -7 a + 1\bigr] \) ${y}^2+\left(a+1\right){x}{y}+{y}={x}^{3}+\left(a+1\right){x}^{2}+\left(-8a-32\right){x}-7a+1$
567.1-b4 567.1-b \(\Q(\sqrt{7}) \) \( 3^{4} \cdot 7 \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $5.503291420$ 1.040024320 \( \frac{9461248}{7} a + 3577792 \) \( \bigl[a + 1\) , \( a + 1\) , \( 1\) , \( 19 a - 41\) , \( -17 a + 41\bigr] \) ${y}^2+\left(a+1\right){x}{y}+{y}={x}^{3}+\left(a+1\right){x}^{2}+\left(19a-41\right){x}-17a+41$
567.1-c1 567.1-c \(\Q(\sqrt{7}) \) \( 3^{4} \cdot 7 \) $1$ $\Z/4\Z$ $\mathrm{SU}(2)$ $2.638508823$ $0.271340145$ 4.329558047 \( -\frac{4354703137}{17294403} \) \( \bigl[a\) , \( -1\) , \( 0\) , \( -306\) , \( -5859\bigr] \) ${y}^2+a{x}{y}={x}^{3}-{x}^{2}-306{x}-5859$
567.1-c2 567.1-c \(\Q(\sqrt{7}) \) \( 3^{4} \cdot 7 \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $2.638508823$ $2.170721162$ 4.329558047 \( -\frac{1153486390269896663}{301327047} a + \frac{435976874792639720}{43046721} \) \( \bigl[a\) , \( -1\) , \( 0\) , \( 1035 a - 2871\) , \( -29241 a + 82944\bigr] \) ${y}^2+a{x}{y}={x}^{3}-{x}^{2}+\left(1035a-2871\right){x}-29241a+82944$
567.1-c3 567.1-c \(\Q(\sqrt{7}) \) \( 3^{4} \cdot 7 \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $1.319254411$ $4.341442324$ 4.329558047 \( \frac{103823}{63} \) \( \bigl[a\) , \( -1\) , \( 0\) , \( 9\) , \( 0\bigr] \) ${y}^2+a{x}{y}={x}^{3}-{x}^{2}+9{x}$
567.1-c4 567.1-c \(\Q(\sqrt{7}) \) \( 3^{4} \cdot 7 \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $0.659627205$ $4.341442324$ 4.329558047 \( \frac{7189057}{3969} \) \( \bigl[a\) , \( -1\) , \( 0\) , \( -36\) , \( -27\bigr] \) ${y}^2+a{x}{y}={x}^{3}-{x}^{2}-36{x}-27$
567.1-c5 567.1-c \(\Q(\sqrt{7}) \) \( 3^{4} \cdot 7 \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1.319254411$ $4.341442324$ 4.329558047 \( \frac{6570725617}{45927} \) \( \bigl[a\) , \( -1\) , \( 0\) , \( -351\) , \( 2430\bigr] \) ${y}^2+a{x}{y}={x}^{3}-{x}^{2}-351{x}+2430$
567.1-c6 567.1-c \(\Q(\sqrt{7}) \) \( 3^{4} \cdot 7 \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1.319254411$ $1.085360581$ 4.329558047 \( \frac{13027640977}{21609} \) \( \bigl[a\) , \( -1\) , \( 0\) , \( -441\) , \( -3672\bigr] \) ${y}^2+a{x}{y}={x}^{3}-{x}^{2}-441{x}-3672$
567.1-c7 567.1-c \(\Q(\sqrt{7}) \) \( 3^{4} \cdot 7 \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $2.638508823$ $2.170721162$ 4.329558047 \( \frac{1153486390269896663}{301327047} a + \frac{435976874792639720}{43046721} \) \( \bigl[a\) , \( -1\) , \( 0\) , \( -1035 a - 2871\) , \( 29241 a + 82944\bigr] \) ${y}^2+a{x}{y}={x}^{3}-{x}^{2}+\left(-1035a-2871\right){x}+29241a+82944$
567.1-c8 567.1-c \(\Q(\sqrt{7}) \) \( 3^{4} \cdot 7 \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $2.638508823$ $0.271340145$ 4.329558047 \( \frac{53297461115137}{147} \) \( \bigl[a\) , \( -1\) , \( 0\) , \( -7056\) , \( -229905\bigr] \) ${y}^2+a{x}{y}={x}^{3}-{x}^{2}-7056{x}-229905$
567.1-d1 567.1-d \(\Q(\sqrt{7}) \) \( 3^{4} \cdot 7 \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $5.503291420$ 1.040024320 \( -\frac{9461248}{7} a + 3577792 \) \( \bigl[a + 1\) , \( a + 1\) , \( a\) , \( -14 a - 44\) , \( -27 a - 76\bigr] \) ${y}^2+\left(a+1\right){x}{y}+a{y}={x}^{3}+\left(a+1\right){x}^{2}+\left(-14a-44\right){x}-27a-76$
567.1-d2 567.1-d \(\Q(\sqrt{7}) \) \( 3^{4} \cdot 7 \) 0 $\Z/6\Z$ $\mathrm{SU}(2)$ $1$ $8.254937131$ 1.040024320 \( \frac{1204736}{343} a + \frac{3558976}{343} \) \( \bigl[a + 1\) , \( a + 1\) , \( 1\) , \( -143 a - 377\) , \( 1148 a + 3037\bigr] \) ${y}^2+\left(a+1\right){x}{y}+{y}={x}^{3}+\left(a+1\right){x}^{2}+\left(-143a-377\right){x}+1148a+3037$
567.1-d3 567.1-d \(\Q(\sqrt{7}) \) \( 3^{4} \cdot 7 \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $2.751645710$ 1.040024320 \( \frac{224768}{7} a + \frac{580672}{7} \) \( \bigl[a + 1\) , \( a + 1\) , \( 1\) , \( 58 a - 140\) , \( 486 a - 1276\bigr] \) ${y}^2+\left(a+1\right){x}{y}+{y}={x}^{3}+\left(a+1\right){x}^{2}+\left(58a-140\right){x}+486a-1276$
567.1-d4 567.1-d \(\Q(\sqrt{7}) \) \( 3^{4} \cdot 7 \) 0 $\Z/6\Z$ $\mathrm{SU}(2)$ $1$ $16.50987426$ 1.040024320 \( \frac{3312820736}{49} a + \frac{1252147264}{7} \) \( \bigl[a + 1\) , \( a + 1\) , \( a\) , \( 13 a - 35\) , \( -28 a + 73\bigr] \) ${y}^2+\left(a+1\right){x}{y}+a{y}={x}^{3}+\left(a+1\right){x}^{2}+\left(13a-35\right){x}-28a+73$
567.1-e1 567.1-e \(\Q(\sqrt{7}) \) \( 3^{4} \cdot 7 \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.190615875$ $7.512474961$ 2.164975951 \( -\frac{17359374619}{63} a + \frac{45928588514}{63} \) \( \bigl[a\) , \( -1\) , \( 1\) , \( 349 a + 924\) , \( 100940 a + 267062\bigr] \) ${y}^2+a{x}{y}+{y}={x}^{3}-{x}^{2}+\left(349a+924\right){x}+100940a+267062$
567.1-e2 567.1-e \(\Q(\sqrt{7}) \) \( 3^{4} \cdot 7 \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.381231750$ $15.02494992$ 2.164975951 \( \frac{266548}{21} a - \frac{11591}{3} \) \( \bigl[1\) , \( -1\) , \( a\) , \( 664 a - 1758\) , \( -15679 a + 41481\bigr] \) ${y}^2+{x}{y}+a{y}={x}^{3}-{x}^{2}+\left(664a-1758\right){x}-15679a+41481$
567.1-f1 567.1-f \(\Q(\sqrt{7}) \) \( 3^{4} \cdot 7 \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $5.625830929$ 4.252728444 \( -\frac{108334592}{3969} a + \frac{286626496}{3969} \) \( \bigl[a + 1\) , \( a + 1\) , \( a\) , \( 127 a + 334\) , \( 311316 a + 823663\bigr] \) ${y}^2+\left(a+1\right){x}{y}+a{y}={x}^{3}+\left(a+1\right){x}^{2}+\left(127a+334\right){x}+311316a+823663$
567.1-f2 567.1-f \(\Q(\sqrt{7}) \) \( 3^{4} \cdot 7 \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $5.625830929$ 4.252728444 \( \frac{422830592}{45927} a + \frac{1117795136}{45927} \) \( \bigl[a + 1\) , \( a + 1\) , \( a\) , \( -35 a - 98\) , \( 114 a + 325\bigr] \) ${y}^2+\left(a+1\right){x}{y}+a{y}={x}^{3}+\left(a+1\right){x}^{2}+\left(-35a-98\right){x}+114a+325$
567.1-g1 567.1-g \(\Q(\sqrt{7}) \) \( 3^{4} \cdot 7 \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $2.736190556$ 1.034182821 \( -\frac{266548}{21} a - \frac{11591}{3} \) \( \bigl[a\) , \( -1\) , \( 1\) , \( -665 a - 1758\) , \( -15679 a - 41483\bigr] \) ${y}^2+a{x}{y}+{y}={x}^{3}-{x}^{2}+\left(-665a-1758\right){x}-15679a-41483$
567.1-g2 567.1-g \(\Q(\sqrt{7}) \) \( 3^{4} \cdot 7 \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $1.368095278$ 1.034182821 \( \frac{17359374619}{63} a + \frac{45928588514}{63} \) \( \bigl[1\) , \( -1\) , \( a\) , \( -350 a + 924\) , \( 100940 a - 267064\bigr] \) ${y}^2+{x}{y}+a{y}={x}^{3}-{x}^{2}+\left(-350a+924\right){x}+100940a-267064$
567.1-h1 567.1-h \(\Q(\sqrt{7}) \) \( 3^{4} \cdot 7 \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $5.133535453$ $1.735260738$ 6.733832077 \( -\frac{108334592}{3969} a + \frac{286626496}{3969} \) \( \bigl[a + 1\) , \( a + 1\) , \( a\) , \( 127 a + 334\) , \( -310733 a - 822124\bigr] \) ${y}^2+\left(a+1\right){x}{y}+a{y}={x}^{3}+\left(a+1\right){x}^{2}+\left(127a+334\right){x}-310733a-822124$
567.1-h2 567.1-h \(\Q(\sqrt{7}) \) \( 3^{4} \cdot 7 \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $2.566767726$ $1.735260738$ 6.733832077 \( \frac{422830592}{45927} a + \frac{1117795136}{45927} \) \( \bigl[a + 1\) , \( a + 1\) , \( a\) , \( -35 a - 98\) , \( -287 a - 784\bigr] \) ${y}^2+\left(a+1\right){x}{y}+a{y}={x}^{3}+\left(a+1\right){x}^{2}+\left(-35a-98\right){x}-287a-784$
567.1-i1 567.1-i \(\Q(\sqrt{7}) \) \( 3^{4} \cdot 7 \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.381231750$ $15.02494992$ 2.164975951 \( -\frac{266548}{21} a - \frac{11591}{3} \) \( \bigl[1\) , \( -1\) , \( a\) , \( -665 a - 1758\) , \( 15679 a + 41481\bigr] \) ${y}^2+{x}{y}+a{y}={x}^{3}-{x}^{2}+\left(-665a-1758\right){x}+15679a+41481$
567.1-i2 567.1-i \(\Q(\sqrt{7}) \) \( 3^{4} \cdot 7 \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.190615875$ $7.512474961$ 2.164975951 \( \frac{17359374619}{63} a + \frac{45928588514}{63} \) \( \bigl[a\) , \( -1\) , \( 1\) , \( -350 a + 924\) , \( -100940 a + 267062\bigr] \) ${y}^2+a{x}{y}+{y}={x}^{3}-{x}^{2}+\left(-350a+924\right){x}-100940a+267062$
567.1-j1 567.1-j \(\Q(\sqrt{7}) \) \( 3^{4} \cdot 7 \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.585879788$ $13.23033863$ 2.929749280 \( -\frac{9461248}{7} a + 3577792 \) \( \bigl[a + 1\) , \( a + 1\) , \( a\) , \( -14 a - 44\) , \( -50 a - 128\bigr] \) ${y}^2+\left(a+1\right){x}{y}+a{y}={x}^{3}+\left(a+1\right){x}^{2}+\left(-14a-44\right){x}-50a-128$
567.1-j2 567.1-j \(\Q(\sqrt{7}) \) \( 3^{4} \cdot 7 \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.878819682$ $4.410112877$ 2.929749280 \( \frac{1204736}{343} a + \frac{3558976}{343} \) \( \bigl[a + 1\) , \( a + 1\) , \( 1\) , \( -143 a - 377\) , \( -1819 a - 4813\bigr] \) ${y}^2+\left(a+1\right){x}{y}+{y}={x}^{3}+\left(a+1\right){x}^{2}+\left(-143a-377\right){x}-1819a-4813$
567.1-j3 567.1-j \(\Q(\sqrt{7}) \) \( 3^{4} \cdot 7 \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.292939894$ $13.23033863$ 2.929749280 \( \frac{224768}{7} a + \frac{580672}{7} \) \( \bigl[a + 1\) , \( a + 1\) , \( 1\) , \( 58 a - 140\) , \( -518 a + 1381\bigr] \) ${y}^2+\left(a+1\right){x}{y}+{y}={x}^{3}+\left(a+1\right){x}^{2}+\left(58a-140\right){x}-518a+1381$
567.1-j4 567.1-j \(\Q(\sqrt{7}) \) \( 3^{4} \cdot 7 \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $1.757639365$ $4.410112877$ 2.929749280 \( \frac{3312820736}{49} a + \frac{1252147264}{7} \) \( \bigl[a + 1\) , \( a + 1\) , \( a\) , \( 13 a - 35\) , \( 14 a - 70\bigr] \) ${y}^2+\left(a+1\right){x}{y}+a{y}={x}^{3}+\left(a+1\right){x}^{2}+\left(13a-35\right){x}+14a-70$
567.1-k1 567.1-k \(\Q(\sqrt{7}) \) \( 3^{4} \cdot 7 \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $1.368095278$ 1.034182821 \( -\frac{17359374619}{63} a + \frac{45928588514}{63} \) \( \bigl[1\) , \( -1\) , \( a\) , \( 349 a + 924\) , \( -100940 a - 267064\bigr] \) ${y}^2+{x}{y}+a{y}={x}^{3}-{x}^{2}+\left(349a+924\right){x}-100940a-267064$
567.1-k2 567.1-k \(\Q(\sqrt{7}) \) \( 3^{4} \cdot 7 \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $2.736190556$ 1.034182821 \( \frac{266548}{21} a - \frac{11591}{3} \) \( \bigl[a\) , \( -1\) , \( 1\) , \( 664 a - 1758\) , \( 15679 a - 41483\bigr] \) ${y}^2+a{x}{y}+{y}={x}^{3}-{x}^{2}+\left(664a-1758\right){x}+15679a-41483$
567.1-l1 567.1-l \(\Q(\sqrt{7}) \) \( 3^{4} \cdot 7 \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $1.217293980$ 1.840375511 \( -\frac{4354703137}{17294403} \) \( \bigl[1\) , \( -1\) , \( 0\) , \( -306\) , \( 5859\bigr] \) ${y}^2+{x}{y}={x}^{3}-{x}^{2}-306{x}+5859$
567.1-l2 567.1-l \(\Q(\sqrt{7}) \) \( 3^{4} \cdot 7 \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.304323495$ 1.840375511 \( -\frac{1153486390269896663}{301327047} a + \frac{435976874792639720}{43046721} \) \( \bigl[1\) , \( -1\) , \( 0\) , \( 1035 a - 2871\) , \( 29241 a - 82944\bigr] \) ${y}^2+{x}{y}={x}^{3}-{x}^{2}+\left(1035a-2871\right){x}+29241a-82944$
567.1-l3 567.1-l \(\Q(\sqrt{7}) \) \( 3^{4} \cdot 7 \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $4.869175922$ 1.840375511 \( \frac{103823}{63} \) \( \bigl[1\) , \( -1\) , \( 0\) , \( 9\) , \( 0\bigr] \) ${y}^2+{x}{y}={x}^{3}-{x}^{2}+9{x}$
567.1-l4 567.1-l \(\Q(\sqrt{7}) \) \( 3^{4} \cdot 7 \) 0 $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $4.869175922$ 1.840375511 \( \frac{7189057}{3969} \) \( \bigl[1\) , \( -1\) , \( 0\) , \( -36\) , \( 27\bigr] \) ${y}^2+{x}{y}={x}^{3}-{x}^{2}-36{x}+27$
567.1-l5 567.1-l \(\Q(\sqrt{7}) \) \( 3^{4} \cdot 7 \) 0 $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $1.217293980$ 1.840375511 \( \frac{6570725617}{45927} \) \( \bigl[1\) , \( -1\) , \( 0\) , \( -351\) , \( -2430\bigr] \) ${y}^2+{x}{y}={x}^{3}-{x}^{2}-351{x}-2430$
567.1-l6 567.1-l \(\Q(\sqrt{7}) \) \( 3^{4} \cdot 7 \) 0 $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $4.869175922$ 1.840375511 \( \frac{13027640977}{21609} \) \( \bigl[1\) , \( -1\) , \( 0\) , \( -441\) , \( 3672\bigr] \) ${y}^2+{x}{y}={x}^{3}-{x}^{2}-441{x}+3672$
567.1-l7 567.1-l \(\Q(\sqrt{7}) \) \( 3^{4} \cdot 7 \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.304323495$ 1.840375511 \( \frac{1153486390269896663}{301327047} a + \frac{435976874792639720}{43046721} \) \( \bigl[1\) , \( -1\) , \( 0\) , \( -1035 a - 2871\) , \( -29241 a - 82944\bigr] \) ${y}^2+{x}{y}={x}^{3}-{x}^{2}+\left(-1035a-2871\right){x}-29241a-82944$
567.1-l8 567.1-l \(\Q(\sqrt{7}) \) \( 3^{4} \cdot 7 \) 0 $\Z/4\Z$ $\mathrm{SU}(2)$ $1$ $4.869175922$ 1.840375511 \( \frac{53297461115137}{147} \) \( \bigl[1\) , \( -1\) , \( 0\) , \( -7056\) , \( 229905\bigr] \) ${y}^2+{x}{y}={x}^{3}-{x}^{2}-7056{x}+229905$
567.1-m1 567.1-m \(\Q(\sqrt{7}) \) \( 3^{4} \cdot 7 \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.292939894$ $13.23033863$ 2.929749280 \( -\frac{224768}{7} a + \frac{580672}{7} \) \( \bigl[a + 1\) , \( a + 1\) , \( a\) , \( -53 a - 143\) , \( 375 a + 991\bigr] \) ${y}^2+\left(a+1\right){x}{y}+a{y}={x}^{3}+\left(a+1\right){x}^{2}+\left(-53a-143\right){x}+375a+991$
567.1-m2 567.1-m \(\Q(\sqrt{7}) \) \( 3^{4} \cdot 7 \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.878819682$ $4.410112877$ 2.929749280 \( -\frac{1204736}{343} a + \frac{3558976}{343} \) \( \bigl[a + 1\) , \( a + 1\) , \( a\) , \( 148 a - 380\) , \( 1439 a - 3796\bigr] \) ${y}^2+\left(a+1\right){x}{y}+a{y}={x}^{3}+\left(a+1\right){x}^{2}+\left(148a-380\right){x}+1439a-3796$
567.1-m3 567.1-m \(\Q(\sqrt{7}) \) \( 3^{4} \cdot 7 \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $1.757639365$ $4.410112877$ 2.929749280 \( -\frac{3312820736}{49} a + \frac{1252147264}{7} \) \( \bigl[a + 1\) , \( a + 1\) , \( 1\) , \( -8 a - 32\) , \( -49 a - 142\bigr] \) ${y}^2+\left(a+1\right){x}{y}+{y}={x}^{3}+\left(a+1\right){x}^{2}+\left(-8a-32\right){x}-49a-142$
567.1-m4 567.1-m \(\Q(\sqrt{7}) \) \( 3^{4} \cdot 7 \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.585879788$ $13.23033863$ 2.929749280 \( \frac{9461248}{7} a + 3577792 \) \( \bigl[a + 1\) , \( a + 1\) , \( 1\) , \( 19 a - 41\) , \( 6 a - 11\bigr] \) ${y}^2+\left(a+1\right){x}{y}+{y}={x}^{3}+\left(a+1\right){x}^{2}+\left(19a-41\right){x}+6a-11$
567.1-n1 567.1-n \(\Q(\sqrt{7}) \) \( 3^{4} \cdot 7 \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $5.625830929$ 4.252728444 \( -\frac{422830592}{45927} a + \frac{1117795136}{45927} \) \( \bigl[a + 1\) , \( a + 1\) , \( 1\) , \( 40 a - 95\) , \( -212 a + 589\bigr] \) ${y}^2+\left(a+1\right){x}{y}+{y}={x}^{3}+\left(a+1\right){x}^{2}+\left(40a-95\right){x}-212a+589$
567.1-n2 567.1-n \(\Q(\sqrt{7}) \) \( 3^{4} \cdot 7 \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $5.625830929$ 4.252728444 \( \frac{108334592}{3969} a + \frac{286626496}{3969} \) \( \bigl[a + 1\) , \( a + 1\) , \( 1\) , \( -122 a + 337\) , \( -310982 a + 822793\bigr] \) ${y}^2+\left(a+1\right){x}{y}+{y}={x}^{3}+\left(a+1\right){x}^{2}+\left(-122a+337\right){x}-310982a+822793$
  displayed columns for results

  *The rank, regulator and analytic order of Ш are not known for all curves in the database; curves for which these are unknown will not appear in searches specifying one of these quantities.