Learn more

Refine search


Results (48 matches)

  displayed columns for results
Label Class Base field Conductor norm Rank Torsion CM Sato-Tate Regulator Period Leading coeff j-invariant Weierstrass coefficients Weierstrass equation
567.1-a1 567.1-a Q(7)\Q(\sqrt{7}) 347 3^{4} \cdot 7 11 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 2.5667677262.566767726 1.7352607381.735260738 6.733832077 42283059245927a+111779513645927 -\frac{422830592}{45927} a + \frac{1117795136}{45927} [a+1 \bigl[a + 1 , a+1 a + 1 , 1 1 , 40a95 40 a - 95 , 189a520] 189 a - 520\bigr] y2+(a+1)xy+y=x3+(a+1)x2+(40a95)x+189a520{y}^2+\left(a+1\right){x}{y}+{y}={x}^{3}+\left(a+1\right){x}^{2}+\left(40a-95\right){x}+189a-520
567.1-a2 567.1-a Q(7)\Q(\sqrt{7}) 347 3^{4} \cdot 7 11 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 5.1335354535.133535453 1.7352607381.735260738 6.733832077 1083345923969a+2866264963969 \frac{108334592}{3969} a + \frac{286626496}{3969} [a+1 \bigl[a + 1 , a+1 a + 1 , 1 1 , 122a+337 -122 a + 337 , 311067a822994] 311067 a - 822994\bigr] y2+(a+1)xy+y=x3+(a+1)x2+(122a+337)x+311067a822994{y}^2+\left(a+1\right){x}{y}+{y}={x}^{3}+\left(a+1\right){x}^{2}+\left(-122a+337\right){x}+311067a-822994
567.1-b1 567.1-b Q(7)\Q(\sqrt{7}) 347 3^{4} \cdot 7 0 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 11 2.7516457102.751645710 1.040024320 2247687a+5806727 -\frac{224768}{7} a + \frac{580672}{7} [a+1 \bigl[a + 1 , a+1 a + 1 , a a , 53a143 -53 a - 143 , 629a1666] -629 a - 1666\bigr] y2+(a+1)xy+ay=x3+(a+1)x2+(53a143)x629a1666{y}^2+\left(a+1\right){x}{y}+a{y}={x}^{3}+\left(a+1\right){x}^{2}+\left(-53a-143\right){x}-629a-1666
567.1-b2 567.1-b Q(7)\Q(\sqrt{7}) 347 3^{4} \cdot 7 0 Z/6Z\Z/6\Z SU(2)\mathrm{SU}(2) 11 8.2549371318.254937131 1.040024320 1204736343a+3558976343 -\frac{1204736}{343} a + \frac{3558976}{343} [a+1 \bigl[a + 1 , a+1 a + 1 , a a , 148a380 148 a - 380 , 1528a+4054] -1528 a + 4054\bigr] y2+(a+1)xy+ay=x3+(a+1)x2+(148a380)x1528a+4054{y}^2+\left(a+1\right){x}{y}+a{y}={x}^{3}+\left(a+1\right){x}^{2}+\left(148a-380\right){x}-1528a+4054
567.1-b3 567.1-b Q(7)\Q(\sqrt{7}) 347 3^{4} \cdot 7 0 Z/6Z\Z/6\Z SU(2)\mathrm{SU}(2) 11 16.5098742616.50987426 1.040024320 331282073649a+12521472647 -\frac{3312820736}{49} a + \frac{1252147264}{7} [a+1 \bigl[a + 1 , a+1 a + 1 , 1 1 , 8a32 -8 a - 32 , 7a+1] -7 a + 1\bigr] y2+(a+1)xy+y=x3+(a+1)x2+(8a32)x7a+1{y}^2+\left(a+1\right){x}{y}+{y}={x}^{3}+\left(a+1\right){x}^{2}+\left(-8a-32\right){x}-7a+1
567.1-b4 567.1-b Q(7)\Q(\sqrt{7}) 347 3^{4} \cdot 7 0 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 11 5.5032914205.503291420 1.040024320 94612487a+3577792 \frac{9461248}{7} a + 3577792 [a+1 \bigl[a + 1 , a+1 a + 1 , 1 1 , 19a41 19 a - 41 , 17a+41] -17 a + 41\bigr] y2+(a+1)xy+y=x3+(a+1)x2+(19a41)x17a+41{y}^2+\left(a+1\right){x}{y}+{y}={x}^{3}+\left(a+1\right){x}^{2}+\left(19a-41\right){x}-17a+41
567.1-c1 567.1-c Q(7)\Q(\sqrt{7}) 347 3^{4} \cdot 7 11 Z/4Z\Z/4\Z SU(2)\mathrm{SU}(2) 2.6385088232.638508823 0.2713401450.271340145 4.329558047 435470313717294403 -\frac{4354703137}{17294403} [a \bigl[a , 1 -1 , 0 0 , 306 -306 , 5859] -5859\bigr] y2+axy=x3x2306x5859{y}^2+a{x}{y}={x}^{3}-{x}^{2}-306{x}-5859
567.1-c2 567.1-c Q(7)\Q(\sqrt{7}) 347 3^{4} \cdot 7 11 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 2.6385088232.638508823 2.1707211622.170721162 4.329558047 1153486390269896663301327047a+43597687479263972043046721 -\frac{1153486390269896663}{301327047} a + \frac{435976874792639720}{43046721} [a \bigl[a , 1 -1 , 0 0 , 1035a2871 1035 a - 2871 , 29241a+82944] -29241 a + 82944\bigr] y2+axy=x3x2+(1035a2871)x29241a+82944{y}^2+a{x}{y}={x}^{3}-{x}^{2}+\left(1035a-2871\right){x}-29241a+82944
567.1-c3 567.1-c Q(7)\Q(\sqrt{7}) 347 3^{4} \cdot 7 11 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 1.3192544111.319254411 4.3414423244.341442324 4.329558047 10382363 \frac{103823}{63} [a \bigl[a , 1 -1 , 0 0 , 9 9 , 0] 0\bigr] y2+axy=x3x2+9x{y}^2+a{x}{y}={x}^{3}-{x}^{2}+9{x}
567.1-c4 567.1-c Q(7)\Q(\sqrt{7}) 347 3^{4} \cdot 7 11 Z/2ZZ/2Z\Z/2\Z\oplus\Z/2\Z SU(2)\mathrm{SU}(2) 0.6596272050.659627205 4.3414423244.341442324 4.329558047 71890573969 \frac{7189057}{3969} [a \bigl[a , 1 -1 , 0 0 , 36 -36 , 27] -27\bigr] y2+axy=x3x236x27{y}^2+a{x}{y}={x}^{3}-{x}^{2}-36{x}-27
567.1-c5 567.1-c Q(7)\Q(\sqrt{7}) 347 3^{4} \cdot 7 11 Z/2ZZ/2Z\Z/2\Z\oplus\Z/2\Z SU(2)\mathrm{SU}(2) 1.3192544111.319254411 4.3414423244.341442324 4.329558047 657072561745927 \frac{6570725617}{45927} [a \bigl[a , 1 -1 , 0 0 , 351 -351 , 2430] 2430\bigr] y2+axy=x3x2351x+2430{y}^2+a{x}{y}={x}^{3}-{x}^{2}-351{x}+2430
567.1-c6 567.1-c Q(7)\Q(\sqrt{7}) 347 3^{4} \cdot 7 11 Z/2ZZ/2Z\Z/2\Z\oplus\Z/2\Z SU(2)\mathrm{SU}(2) 1.3192544111.319254411 1.0853605811.085360581 4.329558047 1302764097721609 \frac{13027640977}{21609} [a \bigl[a , 1 -1 , 0 0 , 441 -441 , 3672] -3672\bigr] y2+axy=x3x2441x3672{y}^2+a{x}{y}={x}^{3}-{x}^{2}-441{x}-3672
567.1-c7 567.1-c Q(7)\Q(\sqrt{7}) 347 3^{4} \cdot 7 11 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 2.6385088232.638508823 2.1707211622.170721162 4.329558047 1153486390269896663301327047a+43597687479263972043046721 \frac{1153486390269896663}{301327047} a + \frac{435976874792639720}{43046721} [a \bigl[a , 1 -1 , 0 0 , 1035a2871 -1035 a - 2871 , 29241a+82944] 29241 a + 82944\bigr] y2+axy=x3x2+(1035a2871)x+29241a+82944{y}^2+a{x}{y}={x}^{3}-{x}^{2}+\left(-1035a-2871\right){x}+29241a+82944
567.1-c8 567.1-c Q(7)\Q(\sqrt{7}) 347 3^{4} \cdot 7 11 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 2.6385088232.638508823 0.2713401450.271340145 4.329558047 53297461115137147 \frac{53297461115137}{147} [a \bigl[a , 1 -1 , 0 0 , 7056 -7056 , 229905] -229905\bigr] y2+axy=x3x27056x229905{y}^2+a{x}{y}={x}^{3}-{x}^{2}-7056{x}-229905
567.1-d1 567.1-d Q(7)\Q(\sqrt{7}) 347 3^{4} \cdot 7 0 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 11 5.5032914205.503291420 1.040024320 94612487a+3577792 -\frac{9461248}{7} a + 3577792 [a+1 \bigl[a + 1 , a+1 a + 1 , a a , 14a44 -14 a - 44 , 27a76] -27 a - 76\bigr] y2+(a+1)xy+ay=x3+(a+1)x2+(14a44)x27a76{y}^2+\left(a+1\right){x}{y}+a{y}={x}^{3}+\left(a+1\right){x}^{2}+\left(-14a-44\right){x}-27a-76
567.1-d2 567.1-d Q(7)\Q(\sqrt{7}) 347 3^{4} \cdot 7 0 Z/6Z\Z/6\Z SU(2)\mathrm{SU}(2) 11 8.2549371318.254937131 1.040024320 1204736343a+3558976343 \frac{1204736}{343} a + \frac{3558976}{343} [a+1 \bigl[a + 1 , a+1 a + 1 , 1 1 , 143a377 -143 a - 377 , 1148a+3037] 1148 a + 3037\bigr] y2+(a+1)xy+y=x3+(a+1)x2+(143a377)x+1148a+3037{y}^2+\left(a+1\right){x}{y}+{y}={x}^{3}+\left(a+1\right){x}^{2}+\left(-143a-377\right){x}+1148a+3037
567.1-d3 567.1-d Q(7)\Q(\sqrt{7}) 347 3^{4} \cdot 7 0 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 11 2.7516457102.751645710 1.040024320 2247687a+5806727 \frac{224768}{7} a + \frac{580672}{7} [a+1 \bigl[a + 1 , a+1 a + 1 , 1 1 , 58a140 58 a - 140 , 486a1276] 486 a - 1276\bigr] y2+(a+1)xy+y=x3+(a+1)x2+(58a140)x+486a1276{y}^2+\left(a+1\right){x}{y}+{y}={x}^{3}+\left(a+1\right){x}^{2}+\left(58a-140\right){x}+486a-1276
567.1-d4 567.1-d Q(7)\Q(\sqrt{7}) 347 3^{4} \cdot 7 0 Z/6Z\Z/6\Z SU(2)\mathrm{SU}(2) 11 16.5098742616.50987426 1.040024320 331282073649a+12521472647 \frac{3312820736}{49} a + \frac{1252147264}{7} [a+1 \bigl[a + 1 , a+1 a + 1 , a a , 13a35 13 a - 35 , 28a+73] -28 a + 73\bigr] y2+(a+1)xy+ay=x3+(a+1)x2+(13a35)x28a+73{y}^2+\left(a+1\right){x}{y}+a{y}={x}^{3}+\left(a+1\right){x}^{2}+\left(13a-35\right){x}-28a+73
567.1-e1 567.1-e Q(7)\Q(\sqrt{7}) 347 3^{4} \cdot 7 11 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 0.1906158750.190615875 7.5124749617.512474961 2.164975951 1735937461963a+4592858851463 -\frac{17359374619}{63} a + \frac{45928588514}{63} [a \bigl[a , 1 -1 , 1 1 , 349a+924 349 a + 924 , 100940a+267062] 100940 a + 267062\bigr] y2+axy+y=x3x2+(349a+924)x+100940a+267062{y}^2+a{x}{y}+{y}={x}^{3}-{x}^{2}+\left(349a+924\right){x}+100940a+267062
567.1-e2 567.1-e Q(7)\Q(\sqrt{7}) 347 3^{4} \cdot 7 11 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 0.3812317500.381231750 15.0249499215.02494992 2.164975951 26654821a115913 \frac{266548}{21} a - \frac{11591}{3} [1 \bigl[1 , 1 -1 , a a , 664a1758 664 a - 1758 , 15679a+41481] -15679 a + 41481\bigr] y2+xy+ay=x3x2+(664a1758)x15679a+41481{y}^2+{x}{y}+a{y}={x}^{3}-{x}^{2}+\left(664a-1758\right){x}-15679a+41481
567.1-f1 567.1-f Q(7)\Q(\sqrt{7}) 347 3^{4} \cdot 7 0 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 11 5.6258309295.625830929 4.252728444 1083345923969a+2866264963969 -\frac{108334592}{3969} a + \frac{286626496}{3969} [a+1 \bigl[a + 1 , a+1 a + 1 , a a , 127a+334 127 a + 334 , 311316a+823663] 311316 a + 823663\bigr] y2+(a+1)xy+ay=x3+(a+1)x2+(127a+334)x+311316a+823663{y}^2+\left(a+1\right){x}{y}+a{y}={x}^{3}+\left(a+1\right){x}^{2}+\left(127a+334\right){x}+311316a+823663
567.1-f2 567.1-f Q(7)\Q(\sqrt{7}) 347 3^{4} \cdot 7 0 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 11 5.6258309295.625830929 4.252728444 42283059245927a+111779513645927 \frac{422830592}{45927} a + \frac{1117795136}{45927} [a+1 \bigl[a + 1 , a+1 a + 1 , a a , 35a98 -35 a - 98 , 114a+325] 114 a + 325\bigr] y2+(a+1)xy+ay=x3+(a+1)x2+(35a98)x+114a+325{y}^2+\left(a+1\right){x}{y}+a{y}={x}^{3}+\left(a+1\right){x}^{2}+\left(-35a-98\right){x}+114a+325
567.1-g1 567.1-g Q(7)\Q(\sqrt{7}) 347 3^{4} \cdot 7 0 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 11 2.7361905562.736190556 1.034182821 26654821a115913 -\frac{266548}{21} a - \frac{11591}{3} [a \bigl[a , 1 -1 , 1 1 , 665a1758 -665 a - 1758 , 15679a41483] -15679 a - 41483\bigr] y2+axy+y=x3x2+(665a1758)x15679a41483{y}^2+a{x}{y}+{y}={x}^{3}-{x}^{2}+\left(-665a-1758\right){x}-15679a-41483
567.1-g2 567.1-g Q(7)\Q(\sqrt{7}) 347 3^{4} \cdot 7 0 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 11 1.3680952781.368095278 1.034182821 1735937461963a+4592858851463 \frac{17359374619}{63} a + \frac{45928588514}{63} [1 \bigl[1 , 1 -1 , a a , 350a+924 -350 a + 924 , 100940a267064] 100940 a - 267064\bigr] y2+xy+ay=x3x2+(350a+924)x+100940a267064{y}^2+{x}{y}+a{y}={x}^{3}-{x}^{2}+\left(-350a+924\right){x}+100940a-267064
567.1-h1 567.1-h Q(7)\Q(\sqrt{7}) 347 3^{4} \cdot 7 11 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 5.1335354535.133535453 1.7352607381.735260738 6.733832077 1083345923969a+2866264963969 -\frac{108334592}{3969} a + \frac{286626496}{3969} [a+1 \bigl[a + 1 , a+1 a + 1 , a a , 127a+334 127 a + 334 , 310733a822124] -310733 a - 822124\bigr] y2+(a+1)xy+ay=x3+(a+1)x2+(127a+334)x310733a822124{y}^2+\left(a+1\right){x}{y}+a{y}={x}^{3}+\left(a+1\right){x}^{2}+\left(127a+334\right){x}-310733a-822124
567.1-h2 567.1-h Q(7)\Q(\sqrt{7}) 347 3^{4} \cdot 7 11 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 2.5667677262.566767726 1.7352607381.735260738 6.733832077 42283059245927a+111779513645927 \frac{422830592}{45927} a + \frac{1117795136}{45927} [a+1 \bigl[a + 1 , a+1 a + 1 , a a , 35a98 -35 a - 98 , 287a784] -287 a - 784\bigr] y2+(a+1)xy+ay=x3+(a+1)x2+(35a98)x287a784{y}^2+\left(a+1\right){x}{y}+a{y}={x}^{3}+\left(a+1\right){x}^{2}+\left(-35a-98\right){x}-287a-784
567.1-i1 567.1-i Q(7)\Q(\sqrt{7}) 347 3^{4} \cdot 7 11 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 0.3812317500.381231750 15.0249499215.02494992 2.164975951 26654821a115913 -\frac{266548}{21} a - \frac{11591}{3} [1 \bigl[1 , 1 -1 , a a , 665a1758 -665 a - 1758 , 15679a+41481] 15679 a + 41481\bigr] y2+xy+ay=x3x2+(665a1758)x+15679a+41481{y}^2+{x}{y}+a{y}={x}^{3}-{x}^{2}+\left(-665a-1758\right){x}+15679a+41481
567.1-i2 567.1-i Q(7)\Q(\sqrt{7}) 347 3^{4} \cdot 7 11 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 0.1906158750.190615875 7.5124749617.512474961 2.164975951 1735937461963a+4592858851463 \frac{17359374619}{63} a + \frac{45928588514}{63} [a \bigl[a , 1 -1 , 1 1 , 350a+924 -350 a + 924 , 100940a+267062] -100940 a + 267062\bigr] y2+axy+y=x3x2+(350a+924)x100940a+267062{y}^2+a{x}{y}+{y}={x}^{3}-{x}^{2}+\left(-350a+924\right){x}-100940a+267062
567.1-j1 567.1-j Q(7)\Q(\sqrt{7}) 347 3^{4} \cdot 7 11 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 0.5858797880.585879788 13.2303386313.23033863 2.929749280 94612487a+3577792 -\frac{9461248}{7} a + 3577792 [a+1 \bigl[a + 1 , a+1 a + 1 , a a , 14a44 -14 a - 44 , 50a128] -50 a - 128\bigr] y2+(a+1)xy+ay=x3+(a+1)x2+(14a44)x50a128{y}^2+\left(a+1\right){x}{y}+a{y}={x}^{3}+\left(a+1\right){x}^{2}+\left(-14a-44\right){x}-50a-128
567.1-j2 567.1-j Q(7)\Q(\sqrt{7}) 347 3^{4} \cdot 7 11 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 0.8788196820.878819682 4.4101128774.410112877 2.929749280 1204736343a+3558976343 \frac{1204736}{343} a + \frac{3558976}{343} [a+1 \bigl[a + 1 , a+1 a + 1 , 1 1 , 143a377 -143 a - 377 , 1819a4813] -1819 a - 4813\bigr] y2+(a+1)xy+y=x3+(a+1)x2+(143a377)x1819a4813{y}^2+\left(a+1\right){x}{y}+{y}={x}^{3}+\left(a+1\right){x}^{2}+\left(-143a-377\right){x}-1819a-4813
567.1-j3 567.1-j Q(7)\Q(\sqrt{7}) 347 3^{4} \cdot 7 11 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 0.2929398940.292939894 13.2303386313.23033863 2.929749280 2247687a+5806727 \frac{224768}{7} a + \frac{580672}{7} [a+1 \bigl[a + 1 , a+1 a + 1 , 1 1 , 58a140 58 a - 140 , 518a+1381] -518 a + 1381\bigr] y2+(a+1)xy+y=x3+(a+1)x2+(58a140)x518a+1381{y}^2+\left(a+1\right){x}{y}+{y}={x}^{3}+\left(a+1\right){x}^{2}+\left(58a-140\right){x}-518a+1381
567.1-j4 567.1-j Q(7)\Q(\sqrt{7}) 347 3^{4} \cdot 7 11 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 1.7576393651.757639365 4.4101128774.410112877 2.929749280 331282073649a+12521472647 \frac{3312820736}{49} a + \frac{1252147264}{7} [a+1 \bigl[a + 1 , a+1 a + 1 , a a , 13a35 13 a - 35 , 14a70] 14 a - 70\bigr] y2+(a+1)xy+ay=x3+(a+1)x2+(13a35)x+14a70{y}^2+\left(a+1\right){x}{y}+a{y}={x}^{3}+\left(a+1\right){x}^{2}+\left(13a-35\right){x}+14a-70
567.1-k1 567.1-k Q(7)\Q(\sqrt{7}) 347 3^{4} \cdot 7 0 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 11 1.3680952781.368095278 1.034182821 1735937461963a+4592858851463 -\frac{17359374619}{63} a + \frac{45928588514}{63} [1 \bigl[1 , 1 -1 , a a , 349a+924 349 a + 924 , 100940a267064] -100940 a - 267064\bigr] y2+xy+ay=x3x2+(349a+924)x100940a267064{y}^2+{x}{y}+a{y}={x}^{3}-{x}^{2}+\left(349a+924\right){x}-100940a-267064
567.1-k2 567.1-k Q(7)\Q(\sqrt{7}) 347 3^{4} \cdot 7 0 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 11 2.7361905562.736190556 1.034182821 26654821a115913 \frac{266548}{21} a - \frac{11591}{3} [a \bigl[a , 1 -1 , 1 1 , 664a1758 664 a - 1758 , 15679a41483] 15679 a - 41483\bigr] y2+axy+y=x3x2+(664a1758)x+15679a41483{y}^2+a{x}{y}+{y}={x}^{3}-{x}^{2}+\left(664a-1758\right){x}+15679a-41483
567.1-l1 567.1-l Q(7)\Q(\sqrt{7}) 347 3^{4} \cdot 7 0 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 11 1.2172939801.217293980 1.840375511 435470313717294403 -\frac{4354703137}{17294403} [1 \bigl[1 , 1 -1 , 0 0 , 306 -306 , 5859] 5859\bigr] y2+xy=x3x2306x+5859{y}^2+{x}{y}={x}^{3}-{x}^{2}-306{x}+5859
567.1-l2 567.1-l Q(7)\Q(\sqrt{7}) 347 3^{4} \cdot 7 0 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 11 0.3043234950.304323495 1.840375511 1153486390269896663301327047a+43597687479263972043046721 -\frac{1153486390269896663}{301327047} a + \frac{435976874792639720}{43046721} [1 \bigl[1 , 1 -1 , 0 0 , 1035a2871 1035 a - 2871 , 29241a82944] 29241 a - 82944\bigr] y2+xy=x3x2+(1035a2871)x+29241a82944{y}^2+{x}{y}={x}^{3}-{x}^{2}+\left(1035a-2871\right){x}+29241a-82944
567.1-l3 567.1-l Q(7)\Q(\sqrt{7}) 347 3^{4} \cdot 7 0 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 11 4.8691759224.869175922 1.840375511 10382363 \frac{103823}{63} [1 \bigl[1 , 1 -1 , 0 0 , 9 9 , 0] 0\bigr] y2+xy=x3x2+9x{y}^2+{x}{y}={x}^{3}-{x}^{2}+9{x}
567.1-l4 567.1-l Q(7)\Q(\sqrt{7}) 347 3^{4} \cdot 7 0 Z/2ZZ/2Z\Z/2\Z\oplus\Z/2\Z SU(2)\mathrm{SU}(2) 11 4.8691759224.869175922 1.840375511 71890573969 \frac{7189057}{3969} [1 \bigl[1 , 1 -1 , 0 0 , 36 -36 , 27] 27\bigr] y2+xy=x3x236x+27{y}^2+{x}{y}={x}^{3}-{x}^{2}-36{x}+27
567.1-l5 567.1-l Q(7)\Q(\sqrt{7}) 347 3^{4} \cdot 7 0 Z/2ZZ/2Z\Z/2\Z\oplus\Z/2\Z SU(2)\mathrm{SU}(2) 11 1.2172939801.217293980 1.840375511 657072561745927 \frac{6570725617}{45927} [1 \bigl[1 , 1 -1 , 0 0 , 351 -351 , 2430] -2430\bigr] y2+xy=x3x2351x2430{y}^2+{x}{y}={x}^{3}-{x}^{2}-351{x}-2430
567.1-l6 567.1-l Q(7)\Q(\sqrt{7}) 347 3^{4} \cdot 7 0 Z/2ZZ/2Z\Z/2\Z\oplus\Z/2\Z SU(2)\mathrm{SU}(2) 11 4.8691759224.869175922 1.840375511 1302764097721609 \frac{13027640977}{21609} [1 \bigl[1 , 1 -1 , 0 0 , 441 -441 , 3672] 3672\bigr] y2+xy=x3x2441x+3672{y}^2+{x}{y}={x}^{3}-{x}^{2}-441{x}+3672
567.1-l7 567.1-l Q(7)\Q(\sqrt{7}) 347 3^{4} \cdot 7 0 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 11 0.3043234950.304323495 1.840375511 1153486390269896663301327047a+43597687479263972043046721 \frac{1153486390269896663}{301327047} a + \frac{435976874792639720}{43046721} [1 \bigl[1 , 1 -1 , 0 0 , 1035a2871 -1035 a - 2871 , 29241a82944] -29241 a - 82944\bigr] y2+xy=x3x2+(1035a2871)x29241a82944{y}^2+{x}{y}={x}^{3}-{x}^{2}+\left(-1035a-2871\right){x}-29241a-82944
567.1-l8 567.1-l Q(7)\Q(\sqrt{7}) 347 3^{4} \cdot 7 0 Z/4Z\Z/4\Z SU(2)\mathrm{SU}(2) 11 4.8691759224.869175922 1.840375511 53297461115137147 \frac{53297461115137}{147} [1 \bigl[1 , 1 -1 , 0 0 , 7056 -7056 , 229905] 229905\bigr] y2+xy=x3x27056x+229905{y}^2+{x}{y}={x}^{3}-{x}^{2}-7056{x}+229905
567.1-m1 567.1-m Q(7)\Q(\sqrt{7}) 347 3^{4} \cdot 7 11 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 0.2929398940.292939894 13.2303386313.23033863 2.929749280 2247687a+5806727 -\frac{224768}{7} a + \frac{580672}{7} [a+1 \bigl[a + 1 , a+1 a + 1 , a a , 53a143 -53 a - 143 , 375a+991] 375 a + 991\bigr] y2+(a+1)xy+ay=x3+(a+1)x2+(53a143)x+375a+991{y}^2+\left(a+1\right){x}{y}+a{y}={x}^{3}+\left(a+1\right){x}^{2}+\left(-53a-143\right){x}+375a+991
567.1-m2 567.1-m Q(7)\Q(\sqrt{7}) 347 3^{4} \cdot 7 11 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 0.8788196820.878819682 4.4101128774.410112877 2.929749280 1204736343a+3558976343 -\frac{1204736}{343} a + \frac{3558976}{343} [a+1 \bigl[a + 1 , a+1 a + 1 , a a , 148a380 148 a - 380 , 1439a3796] 1439 a - 3796\bigr] y2+(a+1)xy+ay=x3+(a+1)x2+(148a380)x+1439a3796{y}^2+\left(a+1\right){x}{y}+a{y}={x}^{3}+\left(a+1\right){x}^{2}+\left(148a-380\right){x}+1439a-3796
567.1-m3 567.1-m Q(7)\Q(\sqrt{7}) 347 3^{4} \cdot 7 11 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 1.7576393651.757639365 4.4101128774.410112877 2.929749280 331282073649a+12521472647 -\frac{3312820736}{49} a + \frac{1252147264}{7} [a+1 \bigl[a + 1 , a+1 a + 1 , 1 1 , 8a32 -8 a - 32 , 49a142] -49 a - 142\bigr] y2+(a+1)xy+y=x3+(a+1)x2+(8a32)x49a142{y}^2+\left(a+1\right){x}{y}+{y}={x}^{3}+\left(a+1\right){x}^{2}+\left(-8a-32\right){x}-49a-142
567.1-m4 567.1-m Q(7)\Q(\sqrt{7}) 347 3^{4} \cdot 7 11 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 0.5858797880.585879788 13.2303386313.23033863 2.929749280 94612487a+3577792 \frac{9461248}{7} a + 3577792 [a+1 \bigl[a + 1 , a+1 a + 1 , 1 1 , 19a41 19 a - 41 , 6a11] 6 a - 11\bigr] y2+(a+1)xy+y=x3+(a+1)x2+(19a41)x+6a11{y}^2+\left(a+1\right){x}{y}+{y}={x}^{3}+\left(a+1\right){x}^{2}+\left(19a-41\right){x}+6a-11
567.1-n1 567.1-n Q(7)\Q(\sqrt{7}) 347 3^{4} \cdot 7 0 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 11 5.6258309295.625830929 4.252728444 42283059245927a+111779513645927 -\frac{422830592}{45927} a + \frac{1117795136}{45927} [a+1 \bigl[a + 1 , a+1 a + 1 , 1 1 , 40a95 40 a - 95 , 212a+589] -212 a + 589\bigr] y2+(a+1)xy+y=x3+(a+1)x2+(40a95)x212a+589{y}^2+\left(a+1\right){x}{y}+{y}={x}^{3}+\left(a+1\right){x}^{2}+\left(40a-95\right){x}-212a+589
567.1-n2 567.1-n Q(7)\Q(\sqrt{7}) 347 3^{4} \cdot 7 0 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 11 5.6258309295.625830929 4.252728444 1083345923969a+2866264963969 \frac{108334592}{3969} a + \frac{286626496}{3969} [a+1 \bigl[a + 1 , a+1 a + 1 , 1 1 , 122a+337 -122 a + 337 , 310982a+822793] -310982 a + 822793\bigr] y2+(a+1)xy+y=x3+(a+1)x2+(122a+337)x310982a+822793{y}^2+\left(a+1\right){x}{y}+{y}={x}^{3}+\left(a+1\right){x}^{2}+\left(-122a+337\right){x}-310982a+822793
  displayed columns for results

  *The rank, regulator and analytic order of Ш are not known for all curves in the database; curves for which these are unknown will not appear in searches specifying one of these quantities.