Generator a a a , with minimal polynomial
x 2 − 7 x^{2} - 7 x 2 − 7 ; class number 1 1 1 .
sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([-7, 0, 1]))
gp: K = nfinit(Polrev([-7, 0, 1]));
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-7, 0, 1]);
y 2 = x 3 + ( − 240 a − 725 ) x + 3698 a + 9520 {y}^2={x}^{3}+\left(-240a-725\right){x}+3698a+9520 y 2 = x 3 + ( − 2 4 0 a − 7 2 5 ) x + 3 6 9 8 a + 9 5 2 0
sage: E = EllipticCurve([K([0,0]),K([0,0]),K([0,0]),K([-725,-240]),K([9520,3698])])
gp: E = ellinit([Polrev([0,0]),Polrev([0,0]),Polrev([0,0]),Polrev([-725,-240]),Polrev([9520,3698])], K);
magma: E := EllipticCurve([K![0,0],K![0,0],K![0,0],K![-725,-240],K![9520,3698]]);
This is a global minimal model .
sage: E.is_global_minimal_model()
Z / 4 Z \Z/{4}\Z Z / 4 Z
P P P h ^ ( P ) \hat{h}(P) h ^ ( P ) Order
( − a + 24 : 24 a − 64 : 1 ) \left(-a + 24 : 24 a - 64 : 1\right) ( − a + 2 4 : 2 4 a − 6 4 : 1 ) 0 0 0 4 4 4
Conductor :
N \frak{N} N
=
( 16 ) (16) ( 1 6 )
=
( a + 3 ) 8 (a+3)^{8} ( a + 3 ) 8
sage: E.conductor()
gp: ellglobalred(E)[1]
magma: Conductor(E);
Conductor norm :
N ( N ) N(\frak{N}) N ( N )
=
256 256 2 5 6
=
2 8 2^{8} 2 8
sage: E.conductor().norm()
gp: idealnorm(ellglobalred(E)[1])
magma: Norm(Conductor(E));
Discriminant :
Δ \Delta Δ
=
− 4096 -4096 − 4 0 9 6
Discriminant ideal :
D m i n = ( Δ ) \frak{D}_{\mathrm{min}} = (\Delta) D m i n = ( Δ )
=
( − 4096 ) (-4096) ( − 4 0 9 6 )
=
( a + 3 ) 24 (a+3)^{24} ( a + 3 ) 2 4
sage: E.discriminant()
gp: E.disc
magma: Discriminant(E);
Discriminant norm :
N ( D m i n ) = N ( Δ ) N(\frak{D}_{\mathrm{min}}) = N(\Delta) N ( D m i n ) = N ( Δ )
=
16777216 16777216 1 6 7 7 7 2 1 6
=
2 24 2^{24} 2 2 4
sage: E.discriminant().norm()
gp: norm(E.disc)
magma: Norm(Discriminant(E));
j-invariant :
j j j
=
51954490735875 a + 137458661985000 51954490735875 a + 137458661985000 5 1 9 5 4 4 9 0 7 3 5 8 7 5 a + 1 3 7 4 5 8 6 6 1 9 8 5 0 0 0
sage: E.j_invariant()
gp: E.j
magma: jInvariant(E);
Endomorphism ring :
E n d ( E ) \mathrm{End}(E) E n d ( E )
=
Z \Z Z
Geometric endomorphism ring :
E n d ( E Q ‾ ) \mathrm{End}(E_{\overline{\Q}}) E n d ( E Q )
=
Z [ − 28 ] \Z[\sqrt{-28}] Z [ − 2 8 ]
(potential complex multiplication )
sage: E.has_cm(), E.cm_discriminant()
magma: HasComplexMultiplication(E);
Sato-Tate group :
S T ( E ) \mathrm{ST}(E) S T ( E )
=
N ( U ( 1 ) ) N(\mathrm{U}(1)) N ( U ( 1 ) )
Analytic rank :
r a n r_{\mathrm{an}} r a n =
0 0 0
sage: E.rank()
magma: Rank(E);
Mordell-Weil rank :
r r r
=
0 0 0
Regulator :
R e g ( E / K ) \mathrm{Reg}(E/K) R e g ( E / K )
=
1 1 1
Néron-Tate Regulator :
R e g N T ( E / K ) \mathrm{Reg}_{\mathrm{NT}}(E/K) R e g N T ( E / K )
=
1 1 1
Global period :
Ω ( E / K ) \Omega(E/K) Ω ( E / K ) ≈
6.5409647643812237351895407197832776641 6.5409647643812237351895407197832776641 6 . 5 4 0 9 6 4 7 6 4 3 8 1 2 2 3 7 3 5 1 8 9 5 4 0 7 1 9 7 8 3 2 7 7 6 6 4 1
Tamagawa product :
∏ p c p \prod_{\frak{p}}c_{\frak{p}} ∏ p c p =
4 4 4
Torsion order :
# E ( K ) t o r \#E(K)_{\mathrm{tor}} # E ( K ) t o r =
4 4 4
Special value :
L ( r ) ( E / K , 1 ) / r ! L^{(r)}(E/K,1)/r! L ( r ) ( E / K , 1 ) / r !
≈ 1.2361261500706366841245492420460944111 1.2361261500706366841245492420460944111 1 . 2 3 6 1 2 6 1 5 0 0 7 0 6 3 6 6 8 4 1 2 4 5 4 9 2 4 2 0 4 6 0 9 4 4 1 1 1
Analytic order of Ш :
Шa n {}_{\mathrm{an}} a n =
4 4 4 (rounded)
1.236126150 ≈ L ( E / K , 1 ) = ? # Ш ( E / K ) ⋅ Ω ( E / K ) ⋅ R e g N T ( E / K ) ⋅ ∏ p c p # E ( K ) t o r 2 ⋅ ∣ d K ∣ 1 / 2 ≈ 4 ⋅ 6.540965 ⋅ 1 ⋅ 4 4 2 ⋅ 5.291503 ≈ 1.236126150 \begin{aligned}1.236126150 \approx L(E/K,1) & \overset{?}{=} \frac{ \# Ш(E/K) \cdot \Omega(E/K) \cdot \mathrm{Reg}_{\mathrm{NT}}(E/K) \cdot \prod_{\mathfrak{p}} c_{\mathfrak{p}} } { \#E(K)_{\mathrm{tor}}^2 \cdot \left|d_K\right|^{1/2} } \\ & \approx \frac{ 4 \cdot 6.540965 \cdot 1 \cdot 4 } { {4^2 \cdot 5.291503} } \\ & \approx 1.236126150 \end{aligned} 1 . 2 3 6 1 2 6 1 5 0 ≈ L ( E / K , 1 ) = ? # E ( K ) t o r 2 ⋅ ∣ d K ∣ 1 / 2 # Ш ( E / K ) ⋅ Ω ( E / K ) ⋅ R e g N T ( E / K ) ⋅ ∏ p c p ≈ 4 2 ⋅ 5 . 2 9 1 5 0 3 4 ⋅ 6 . 5 4 0 9 6 5 ⋅ 1 ⋅ 4 ≈ 1 . 2 3 6 1 2 6 1 5 0
sage: E.local_data()
magma: LocalInformation(E);
This elliptic curve is not semistable .
There
is only one prime p \frak{p} p
of bad reduction .
This curve has non-trivial cyclic isogenies of degree d d d for d = d= d =
2, 4, 7, 14 and 28.
Its isogeny class
256.1-j
consists of curves linked by isogenies of
degrees dividing 28.
This elliptic curve is a Q \Q Q -curve .
It is not the base change of an elliptic curve defined over any subfield.