Base field \(\Q(\sqrt{21}) \)
Generator \(a\), with minimal polynomial \( x^{2} - x - 5 \); class number \(1\).
Weierstrass equation
This is a global minimal model.
Mordell-Weil group structure
\(\Z/{6}\Z\)
Mordell-Weil generators
| $P$ | $\hat{h}(P)$ | Order |
|---|---|---|
| $\left(31 a - 94 : 521 a - 1425 : 1\right)$ | $0$ | $6$ |
Invariants
| Conductor: | $\frak{N}$ | = | \((-20a+10)\) | = | \((-a+2)\cdot(2)\cdot(-a)\cdot(-a+1)\cdot(a+3)\) |
|
| |||||
| Conductor norm: | $N(\frak{N})$ | = | \( 2100 \) | = | \(3\cdot4\cdot5\cdot5\cdot7\) |
|
| |||||
| Discriminant: | $\Delta$ | = | $10380965400750$ | ||
| Discriminant ideal: | $\frak{D}_{\mathrm{min}} = (\Delta)$ | = | \((10380965400750)\) | = | \((-a+2)^{2}\cdot(2)\cdot(-a)^{3}\cdot(-a+1)^{3}\cdot(a+3)^{24}\) |
|
| |||||
| Discriminant norm: | $N(\frak{D}_{\mathrm{min}}) = N(\Delta)$ | = | \( 107764442651568608100562500 \) | = | \(3^{2}\cdot4\cdot5^{3}\cdot5^{3}\cdot7^{24}\) |
|
| |||||
| j-invariant: | $j$ | = | \( \frac{29689921233686449}{10380965400750} \) | ||
|
| |||||
| Endomorphism ring: | $\mathrm{End}(E)$ | = | \(\Z\) | ||
| Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) | ||
|
| |||||
| Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | ||
BSD invariants
| Analytic rank: | $r_{\mathrm{an}}$ | = | \( 0 \) |
|
|
|||
| Mordell-Weil rank: | $r$ | = | \(0\) |
| Regulator: | $\mathrm{Reg}(E/K)$ | = | \( 1 \) |
| Néron-Tate Regulator: | $\mathrm{Reg}_{\mathrm{NT}}(E/K)$ | = | \( 1 \) |
| Global period: | $\Omega(E/K)$ | ≈ | \( 0.30029589318381318887829697453095278211 \) |
| Tamagawa product: | $\prod_{\frak{p}}c_{\frak{p}}$ | = | \( 432 \) = \(2\cdot1\cdot3\cdot3\cdot( 2^{3} \cdot 3 )\) |
| Torsion order: | $\#E(K)_{\mathrm{tor}}$ | = | \(6\) |
| Special value: | $L^{(r)}(E/K,1)/r!$ | ≈ | \( 3.1454369403410226791074156672785803922 \) |
| Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | = | \( 4 \) (rounded) |
BSD formula
$$\begin{aligned}3.145436940 \approx L(E/K,1) & \overset{?}{=} \frac{ \# ะจ(E/K) \cdot \Omega(E/K) \cdot \mathrm{Reg}_{\mathrm{NT}}(E/K) \cdot \prod_{\mathfrak{p}} c_{\mathfrak{p}} } { \#E(K)_{\mathrm{tor}}^2 \cdot \left|d_K\right|^{1/2} } \\ & \approx \frac{ 4 \cdot 0.300296 \cdot 1 \cdot 432 } { {6^2 \cdot 4.582576} } \\ & \approx 3.145436940 \end{aligned}$$
Local data at primes of bad reduction
This elliptic curve is semistable. There are 5 primes $\frak{p}$ of bad reduction.
| $\mathfrak{p}$ | $N(\mathfrak{p})$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | \(\mathrm{ord}_{\mathfrak{p}}(\mathfrak{N}\)) | \(\mathrm{ord}_{\mathfrak{p}}(\mathfrak{D}_{\mathrm{min}}\)) | \(\mathrm{ord}_{\mathfrak{p}}(\mathrm{den}(j))\) |
|---|---|---|---|---|---|---|---|---|
| \((-a+2)\) | \(3\) | \(2\) | \(I_{2}\) | Non-split multiplicative | \(1\) | \(1\) | \(2\) | \(2\) |
| \((2)\) | \(4\) | \(1\) | \(I_{1}\) | Split multiplicative | \(-1\) | \(1\) | \(1\) | \(1\) |
| \((-a)\) | \(5\) | \(3\) | \(I_{3}\) | Split multiplicative | \(-1\) | \(1\) | \(3\) | \(3\) |
| \((-a+1)\) | \(5\) | \(3\) | \(I_{3}\) | Split multiplicative | \(-1\) | \(1\) | \(3\) | \(3\) |
| \((a+3)\) | \(7\) | \(24\) | \(I_{24}\) | Split multiplicative | \(-1\) | \(1\) | \(24\) | \(24\) |
Galois Representations
The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.
| prime | Image of Galois Representation |
|---|---|
| \(2\) | 2B |
| \(3\) | 3B.1.1 |
Isogenies and isogeny class
This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\)
2, 3, 4, 6 and 12.
Its isogeny class
2100.1-bk
consists of curves linked by isogenies of
degrees dividing 12.
Base change
This elliptic curve is a \(\Q\)-curve. It is the base change of the following 2 elliptic curves:
| Base field | Curve |
|---|---|
| \(\Q\) | 630.f1 |
| \(\Q\) | 1470.m1 |