Properties

Label 2.2.21.1-2100.1-bk4
Base field \(\Q(\sqrt{21}) \)
Conductor norm \( 2100 \)
CM no
Base change yes
Q-curve yes
Torsion order \( 6 \)
Rank \( 0 \)

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Base field \(\Q(\sqrt{21}) \)

Generator \(a\), with minimal polynomial \( x^{2} - x - 5 \); class number \(1\).

Copy content comment:Define the base number field
 
Copy content sage:R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([-5, -1, 1]))
 
Copy content gp:K = nfinit(Polrev([-5, -1, 1]));
 
Copy content magma:R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-5, -1, 1]);
 

Weierstrass equation

\({y}^2+a{x}{y}+a{y}={x}^{3}+{x}^{2}+\left(32255a-90315\right){x}+3030599a-8460692\)
Copy content comment:Define the curve
 
Copy content sage:E = EllipticCurve([K([0,1]),K([1,0]),K([0,1]),K([-90315,32255]),K([-8460692,3030599])])
 
Copy content gp:E = ellinit([Polrev([0,1]),Polrev([1,0]),Polrev([0,1]),Polrev([-90315,32255]),Polrev([-8460692,3030599])], K);
 
Copy content magma:E := EllipticCurve([K![0,1],K![1,0],K![0,1],K![-90315,32255],K![-8460692,3030599]]);
 

This is a global minimal model.

Copy content comment:Test whether it is a global minimal model
 
Copy content sage:E.is_global_minimal_model()
 

Mordell-Weil group structure

\(\Z/{6}\Z\)

Mordell-Weil generators

$P$$\hat{h}(P)$Order
$\left(31 a - 94 : 521 a - 1425 : 1\right)$$0$$6$

Invariants

Conductor: $\frak{N}$ = \((-20a+10)\) = \((-a+2)\cdot(2)\cdot(-a)\cdot(-a+1)\cdot(a+3)\)
Copy content comment:Compute the conductor
 
Copy content sage:E.conductor()
 
Copy content gp:ellglobalred(E)[1]
 
Copy content magma:Conductor(E);
 
Conductor norm: $N(\frak{N})$ = \( 2100 \) = \(3\cdot4\cdot5\cdot5\cdot7\)
Copy content comment:Compute the norm of the conductor
 
Copy content sage:E.conductor().norm()
 
Copy content gp:idealnorm(ellglobalred(E)[1])
 
Copy content magma:Norm(Conductor(E));
 
Discriminant: $\Delta$ = $10380965400750$
Discriminant ideal: $\frak{D}_{\mathrm{min}} = (\Delta)$ = \((10380965400750)\) = \((-a+2)^{2}\cdot(2)\cdot(-a)^{3}\cdot(-a+1)^{3}\cdot(a+3)^{24}\)
Copy content comment:Compute the discriminant
 
Copy content sage:E.discriminant()
 
Copy content gp:E.disc
 
Copy content magma:Discriminant(E);
 
Discriminant norm: $N(\frak{D}_{\mathrm{min}}) = N(\Delta)$ = \( 107764442651568608100562500 \) = \(3^{2}\cdot4\cdot5^{3}\cdot5^{3}\cdot7^{24}\)
Copy content comment:Compute the norm of the discriminant
 
Copy content sage:E.discriminant().norm()
 
Copy content gp:norm(E.disc)
 
Copy content magma:Norm(Discriminant(E));
 
j-invariant: $j$ = \( \frac{29689921233686449}{10380965400750} \)
Copy content comment:Compute the j-invariant
 
Copy content sage:E.j_invariant()
 
Copy content gp:E.j
 
Copy content magma:jInvariant(E);
 
Endomorphism ring: $\mathrm{End}(E)$ = \(\Z\)   
Geometric endomorphism ring: $\mathrm{End}(E_{\overline{\Q}})$ = \(\Z\)    (no potential complex multiplication)
Copy content comment:Test for Complex Multiplication
 
Copy content sage:E.has_cm(), E.cm_discriminant()
 
Copy content magma:HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{ST}(E)$ = $\mathrm{SU}(2)$

BSD invariants

Analytic rank: $r_{\mathrm{an}}$= \( 0 \)
Copy content comment:Compute the Mordell-Weil rank
 
Copy content sage:E.rank()
 
Copy content magma:Rank(E);
 
Mordell-Weil rank: $r$ = \(0\)
Regulator: $\mathrm{Reg}(E/K)$ = \( 1 \)
Néron-Tate Regulator: $\mathrm{Reg}_{\mathrm{NT}}(E/K)$ = \( 1 \)
Global period: $\Omega(E/K)$ \( 0.30029589318381318887829697453095278211 \)
Tamagawa product: $\prod_{\frak{p}}c_{\frak{p}}$= \( 432 \)  =  \(2\cdot1\cdot3\cdot3\cdot( 2^{3} \cdot 3 )\)
Torsion order: $\#E(K)_{\mathrm{tor}}$= \(6\)
Special value: $L^{(r)}(E/K,1)/r!$ \( 3.1454369403410226791074156672785803922 \)
Analytic order of Ш: Ш${}_{\mathrm{an}}$= \( 4 \) (rounded)

BSD formula

$$\begin{aligned}3.145436940 \approx L(E/K,1) & \overset{?}{=} \frac{ \# ะจ(E/K) \cdot \Omega(E/K) \cdot \mathrm{Reg}_{\mathrm{NT}}(E/K) \cdot \prod_{\mathfrak{p}} c_{\mathfrak{p}} } { \#E(K)_{\mathrm{tor}}^2 \cdot \left|d_K\right|^{1/2} } \\ & \approx \frac{ 4 \cdot 0.300296 \cdot 1 \cdot 432 } { {6^2 \cdot 4.582576} } \\ & \approx 3.145436940 \end{aligned}$$

Local data at primes of bad reduction

Copy content comment:Compute the local reduction data at primes of bad reduction
 
Copy content sage:E.local_data()
 
Copy content magma:LocalInformation(E);
 

This elliptic curve is semistable. There are 5 primes $\frak{p}$ of bad reduction.

$\mathfrak{p}$ $N(\mathfrak{p})$ Tamagawa number Kodaira symbol Reduction type Root number \(\mathrm{ord}_{\mathfrak{p}}(\mathfrak{N}\)) \(\mathrm{ord}_{\mathfrak{p}}(\mathfrak{D}_{\mathrm{min}}\)) \(\mathrm{ord}_{\mathfrak{p}}(\mathrm{den}(j))\)
\((-a+2)\) \(3\) \(2\) \(I_{2}\) Non-split multiplicative \(1\) \(1\) \(2\) \(2\)
\((2)\) \(4\) \(1\) \(I_{1}\) Split multiplicative \(-1\) \(1\) \(1\) \(1\)
\((-a)\) \(5\) \(3\) \(I_{3}\) Split multiplicative \(-1\) \(1\) \(3\) \(3\)
\((-a+1)\) \(5\) \(3\) \(I_{3}\) Split multiplicative \(-1\) \(1\) \(3\) \(3\)
\((a+3)\) \(7\) \(24\) \(I_{24}\) Split multiplicative \(-1\) \(1\) \(24\) \(24\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B
\(3\) 3B.1.1

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2, 3, 4, 6 and 12.
Its isogeny class 2100.1-bk consists of curves linked by isogenies of degrees dividing 12.

Base change

This elliptic curve is a \(\Q\)-curve. It is the base change of the following 2 elliptic curves:

Base field Curve
\(\Q\) 630.f1
\(\Q\) 1470.m1