Elliptic curves in class 2100.1-bk over \(\Q(\sqrt{21}) \)
Isogeny class 2100.1-bk contains
8 curves linked by isogenies of
degrees dividing 12.
Curve label |
Weierstrass Coefficients |
2100.1-bk1
| \( \bigl[a\) , \( 1\) , \( a\) , \( 405 a - 1135\) , \( 157869 a - 440722\bigr] \)
|
2100.1-bk2
| \( \bigl[a\) , \( 1\) , \( a\) , \( -3645 a + 10205\) , \( -4251285 a + 11868200\bigr] \)
|
2100.1-bk3
| \( \bigl[a\) , \( 1\) , \( a\) , \( 205 a - 575\) , \( -731 a + 2038\bigr] \)
|
2100.1-bk4
| \( \bigl[a\) , \( 1\) , \( a\) , \( 32255 a - 90315\) , \( 3030599 a - 8460692\bigr] \)
|
2100.1-bk5
| \( \bigl[a\) , \( 1\) , \( a\) , \( 13505 a - 37815\) , \( -1254151 a + 3501058\bigr] \)
|
2100.1-bk6
| \( \bigl[a\) , \( 1\) , \( a\) , \( 1805 a - 5055\) , \( 63845 a - 178250\bigr] \)
|
2100.1-bk7
| \( \bigl[a\) , \( 1\) , \( a\) , \( 13405 a - 37535\) , \( -1274315 a + 3557350\bigr] \)
|
2100.1-bk8
| \( \bigl[a\) , \( 1\) , \( a\) , \( 28805 a - 80655\) , \( 4056605 a - 11324930\bigr] \)
|
Rank: \( 0 \)
\(\left(\begin{array}{rrrrrrrr}
1 & 3 & 4 & 12 & 6 & 2 & 12 & 4 \\
3 & 1 & 12 & 4 & 2 & 6 & 4 & 12 \\
4 & 12 & 1 & 12 & 6 & 2 & 3 & 4 \\
12 & 4 & 12 & 1 & 2 & 6 & 4 & 3 \\
6 & 2 & 6 & 2 & 1 & 3 & 2 & 6 \\
2 & 6 & 2 & 6 & 3 & 1 & 6 & 2 \\
12 & 4 & 3 & 4 & 2 & 6 & 1 & 12 \\
4 & 12 & 4 & 3 & 6 & 2 & 12 & 1
\end{array}\right)\)