Learn more

The results below are complete, since the LMFDB contains all elliptic curves with conductor norm at most 5000 over real quadratic fields with discriminant 497

Refine search


Results (44 matches)

  displayed columns for results
Label Class Base field Conductor norm Rank Torsion CM Sato-Tate Regulator Period Leading coeff j-invariant Weierstrass coefficients Weierstrass equation
192.1-a1 192.1-a \(\Q(\sqrt{21}) \) \( 2^{6} \cdot 3 \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $5.062045892$ 2.209257949 \( -\frac{11855696}{2187} a + \frac{117012512}{2187} \) \( \bigl[0\) , \( -a + 1\) , \( 0\) , \( -31 a - 77\) , \( -157 a - 258\bigr] \) ${y}^2={x}^{3}+\left(-a+1\right){x}^{2}+\left(-31a-77\right){x}-157a-258$
192.1-a2 192.1-a \(\Q(\sqrt{21}) \) \( 2^{6} \cdot 3 \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $5.062045892$ 2.209257949 \( \frac{25019564800}{81} a + \frac{44817242368}{81} \) \( \bigl[0\) , \( -a + 1\) , \( 0\) , \( -36 a - 62\) , \( -155 a - 275\bigr] \) ${y}^2={x}^{3}+\left(-a+1\right){x}^{2}+\left(-36a-62\right){x}-155a-275$
192.1-b1 192.1-b \(\Q(\sqrt{21}) \) \( 2^{6} \cdot 3 \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $5.062045892$ 2.209257949 \( -\frac{25019564800}{81} a + \frac{69836807168}{81} \) \( \bigl[0\) , \( a\) , \( 0\) , \( 36 a - 98\) , \( 155 a - 430\bigr] \) ${y}^2={x}^{3}+a{x}^{2}+\left(36a-98\right){x}+155a-430$
192.1-b2 192.1-b \(\Q(\sqrt{21}) \) \( 2^{6} \cdot 3 \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $5.062045892$ 2.209257949 \( \frac{11855696}{2187} a + \frac{35052272}{729} \) \( \bigl[0\) , \( a\) , \( 0\) , \( 31 a - 108\) , \( 157 a - 415\bigr] \) ${y}^2={x}^{3}+a{x}^{2}+\left(31a-108\right){x}+157a-415$
192.1-c1 192.1-c \(\Q(\sqrt{21}) \) \( 2^{6} \cdot 3 \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $21.95917113$ 2.395941998 \( \frac{256}{3} a + \frac{4864}{3} \) \( \bigl[0\) , \( 1\) , \( 0\) , \( -a + 3\) , \( 0\bigr] \) ${y}^2={x}^{3}+{x}^{2}+\left(-a+3\right){x}$
192.1-c2 192.1-c \(\Q(\sqrt{21}) \) \( 2^{6} \cdot 3 \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $10.97958556$ 2.395941998 \( \frac{77872}{3} a + \frac{145568}{3} \) \( \bigl[0\) , \( 1\) , \( 0\) , \( 4 a - 12\) , \( 4 a - 12\bigr] \) ${y}^2={x}^{3}+{x}^{2}+\left(4a-12\right){x}+4a-12$
192.1-d1 192.1-d \(\Q(\sqrt{21}) \) \( 2^{6} \cdot 3 \) 0 $\Z/4\Z$ $\mathrm{SU}(2)$ $1$ $34.67048791$ 0.945715090 \( -\frac{4864}{3} a + \frac{13568}{3} \) \( \bigl[0\) , \( a\) , \( 0\) , \( 1\) , \( 4 a + 7\bigr] \) ${y}^2={x}^{3}+a{x}^{2}+{x}+4a+7$
192.1-d2 192.1-d \(\Q(\sqrt{21}) \) \( 2^{6} \cdot 3 \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $4.333810989$ 0.945715090 \( -\frac{121322980}{9} a + \frac{112888388}{3} \) \( \bigl[0\) , \( a\) , \( 0\) , \( -45 a - 84\) , \( -135 a - 243\bigr] \) ${y}^2={x}^{3}+a{x}^{2}+\left(-45a-84\right){x}-135a-243$
192.1-d3 192.1-d \(\Q(\sqrt{21}) \) \( 2^{6} \cdot 3 \) 0 $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $17.33524395$ 0.945715090 \( \frac{53200}{3} a + \frac{121184}{3} \) \( \bigl[0\) , \( a\) , \( 0\) , \( -25 a - 44\) , \( 81 a + 145\bigr] \) ${y}^2={x}^{3}+a{x}^{2}+\left(-25a-44\right){x}+81a+145$
192.1-d4 192.1-d \(\Q(\sqrt{21}) \) \( 2^{6} \cdot 3 \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $8.667621979$ 0.945715090 \( \frac{5202690124}{3} a + \frac{9319516204}{3} \) \( \bigl[0\) , \( -1\) , \( 0\) , \( -47 a + 128\) , \( 725 a - 2020\bigr] \) ${y}^2={x}^{3}-{x}^{2}+\left(-47a+128\right){x}+725a-2020$
192.1-e1 192.1-e \(\Q(\sqrt{21}) \) \( 2^{6} \cdot 3 \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $2.841754258$ 2.480486475 \( \frac{207646}{6561} \) \( \bigl[0\) , \( -a\) , \( 0\) , \( -78 a + 221\) , \( -4241 a + 11838\bigr] \) ${y}^2={x}^{3}-a{x}^{2}+\left(-78a+221\right){x}-4241a+11838$
192.1-e2 192.1-e \(\Q(\sqrt{21}) \) \( 2^{6} \cdot 3 \) 0 $\Z/4\Z$ $\mathrm{SU}(2)$ $1$ $11.36701703$ 2.480486475 \( \frac{2048}{3} \) \( \bigl[0\) , \( -a\) , \( 0\) , \( -3 a + 11\) , \( 4 a - 12\bigr] \) ${y}^2={x}^{3}-a{x}^{2}+\left(-3a+11\right){x}+4a-12$
192.1-e3 192.1-e \(\Q(\sqrt{21}) \) \( 2^{6} \cdot 3 \) 0 $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $11.36701703$ 2.480486475 \( \frac{35152}{9} \) \( \bigl[0\) , \( -a\) , \( 0\) , \( 22 a - 59\) , \( 75 a - 210\bigr] \) ${y}^2={x}^{3}-a{x}^{2}+\left(22a-59\right){x}+75a-210$
192.1-e4 192.1-e \(\Q(\sqrt{21}) \) \( 2^{6} \cdot 3 \) 0 $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $11.36701703$ 2.480486475 \( \frac{1556068}{81} \) \( \bigl[0\) , \( a - 1\) , \( 0\) , \( -122 a - 217\) , \( 985 a + 1765\bigr] \) ${y}^2={x}^{3}+\left(a-1\right){x}^{2}+\left(-122a-217\right){x}+985a+1765$
192.1-e5 192.1-e \(\Q(\sqrt{21}) \) \( 2^{6} \cdot 3 \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $2.841754258$ 2.480486475 \( \frac{28756228}{3} \) \( \bigl[0\) , \( -a\) , \( 0\) , \( 322 a - 899\) , \( 4959 a - 13842\bigr] \) ${y}^2={x}^{3}-a{x}^{2}+\left(322a-899\right){x}+4959a-13842$
192.1-e6 192.1-e \(\Q(\sqrt{21}) \) \( 2^{6} \cdot 3 \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $11.36701703$ 2.480486475 \( \frac{3065617154}{9} \) \( \bigl[0\) , \( -a\) , \( 0\) , \( 1922 a - 5379\) , \( -68449 a + 191102\bigr] \) ${y}^2={x}^{3}-a{x}^{2}+\left(1922a-5379\right){x}-68449a+191102$
192.1-f1 192.1-f \(\Q(\sqrt{21}) \) \( 2^{6} \cdot 3 \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $3.411050126$ $3.410424115$ 2.538556564 \( -\frac{5202690124}{3} a + \frac{14522206328}{3} \) \( \bigl[0\) , \( -a\) , \( 0\) , \( 20 a - 44\) , \( 76 a - 192\bigr] \) ${y}^2={x}^{3}-a{x}^{2}+\left(20a-44\right){x}+76a-192$
192.1-f2 192.1-f \(\Q(\sqrt{21}) \) \( 2^{6} \cdot 3 \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.852762531$ $13.64169646$ 2.538556564 \( \frac{4864}{3} a + \frac{8704}{3} \) \( \bigl[0\) , \( -a\) , \( 0\) , \( 1\) , \( 0\bigr] \) ${y}^2={x}^{3}-a{x}^{2}+{x}$
192.1-f3 192.1-f \(\Q(\sqrt{21}) \) \( 2^{6} \cdot 3 \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1.705525063$ $13.64169646$ 2.538556564 \( -\frac{53200}{3} a + 58128 \) \( \bigl[0\) , \( -a\) , \( 0\) , \( -4\) , \( 4 a\bigr] \) ${y}^2={x}^{3}-a{x}^{2}-4{x}+4a$
192.1-f4 192.1-f \(\Q(\sqrt{21}) \) \( 2^{6} \cdot 3 \) $1$ $\Z/4\Z$ $\mathrm{SU}(2)$ $0.852762531$ $13.64169646$ 2.538556564 \( \frac{121322980}{9} a + \frac{217342184}{9} \) \( \bigl[0\) , \( -a\) , \( 0\) , \( -20 a - 44\) , \( 108 a + 192\bigr] \) ${y}^2={x}^{3}-a{x}^{2}+\left(-20a-44\right){x}+108a+192$
192.1-g1 192.1-g \(\Q(\sqrt{21}) \) \( 2^{6} \cdot 3 \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $21.95917113$ 2.395941998 \( -\frac{256}{3} a + \frac{5120}{3} \) \( \bigl[0\) , \( 1\) , \( 0\) , \( a + 2\) , \( 0\bigr] \) ${y}^2={x}^{3}+{x}^{2}+\left(a+2\right){x}$
192.1-g2 192.1-g \(\Q(\sqrt{21}) \) \( 2^{6} \cdot 3 \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $10.97958556$ 2.395941998 \( -\frac{77872}{3} a + 74480 \) \( \bigl[0\) , \( 1\) , \( 0\) , \( -4 a - 8\) , \( -4 a - 8\bigr] \) ${y}^2={x}^{3}+{x}^{2}+\left(-4a-8\right){x}-4a-8$
192.1-h1 192.1-h \(\Q(\sqrt{21}) \) \( 2^{6} \cdot 3 \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.393259272$ $22.72318029$ 1.950017184 \( -\frac{256}{3} a + \frac{5120}{3} \) \( \bigl[0\) , \( a\) , \( 0\) , \( a\) , \( 1\bigr] \) ${y}^2={x}^{3}+a{x}^{2}+a{x}+1$
192.1-h2 192.1-h \(\Q(\sqrt{21}) \) \( 2^{6} \cdot 3 \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.196629636$ $22.72318029$ 1.950017184 \( -\frac{77872}{3} a + 74480 \) \( \bigl[0\) , \( a\) , \( 0\) , \( 6 a - 15\) , \( -15 a + 42\bigr] \) ${y}^2={x}^{3}+a{x}^{2}+\left(6a-15\right){x}-15a+42$
192.1-i1 192.1-i \(\Q(\sqrt{21}) \) \( 2^{6} \cdot 3 \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $8.667621979$ 0.945715090 \( -\frac{5202690124}{3} a + \frac{14522206328}{3} \) \( \bigl[0\) , \( -1\) , \( 0\) , \( 47 a + 81\) , \( -725 a - 1295\bigr] \) ${y}^2={x}^{3}-{x}^{2}+\left(47a+81\right){x}-725a-1295$
192.1-i2 192.1-i \(\Q(\sqrt{21}) \) \( 2^{6} \cdot 3 \) 0 $\Z/4\Z$ $\mathrm{SU}(2)$ $1$ $34.67048791$ 0.945715090 \( \frac{4864}{3} a + \frac{8704}{3} \) \( \bigl[0\) , \( -a + 1\) , \( 0\) , \( 1\) , \( -4 a + 11\bigr] \) ${y}^2={x}^{3}+\left(-a+1\right){x}^{2}+{x}-4a+11$
192.1-i3 192.1-i \(\Q(\sqrt{21}) \) \( 2^{6} \cdot 3 \) 0 $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $17.33524395$ 0.945715090 \( -\frac{53200}{3} a + 58128 \) \( \bigl[0\) , \( -a + 1\) , \( 0\) , \( 25 a - 69\) , \( -81 a + 226\bigr] \) ${y}^2={x}^{3}+\left(-a+1\right){x}^{2}+\left(25a-69\right){x}-81a+226$
192.1-i4 192.1-i \(\Q(\sqrt{21}) \) \( 2^{6} \cdot 3 \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $4.333810989$ 0.945715090 \( \frac{121322980}{9} a + \frac{217342184}{9} \) \( \bigl[0\) , \( -a + 1\) , \( 0\) , \( 45 a - 129\) , \( 135 a - 378\bigr] \) ${y}^2={x}^{3}+\left(-a+1\right){x}^{2}+\left(45a-129\right){x}+135a-378$
192.1-j1 192.1-j \(\Q(\sqrt{21}) \) \( 2^{6} \cdot 3 \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $6.551017245$ $1.162639934$ 1.662050944 \( \frac{207646}{6561} \) \( \bigl[0\) , \( -1\) , \( 0\) , \( 16\) , \( -180\bigr] \) ${y}^2={x}^{3}-{x}^{2}+16{x}-180$
192.1-j2 192.1-j \(\Q(\sqrt{21}) \) \( 2^{6} \cdot 3 \) $1$ $\Z/4\Z$ $\mathrm{SU}(2)$ $0.818877155$ $18.60223895$ 1.662050944 \( \frac{2048}{3} \) \( \bigl[0\) , \( -1\) , \( 0\) , \( 1\) , \( 0\bigr] \) ${y}^2={x}^{3}-{x}^{2}+{x}$
192.1-j3 192.1-j \(\Q(\sqrt{21}) \) \( 2^{6} \cdot 3 \) $1$ $\Z/2\Z\oplus\Z/4\Z$ $\mathrm{SU}(2)$ $1.637754311$ $18.60223895$ 1.662050944 \( \frac{35152}{9} \) \( \bigl[0\) , \( -1\) , \( 0\) , \( -4\) , \( 4\bigr] \) ${y}^2={x}^{3}-{x}^{2}-4{x}+4$
192.1-j4 192.1-j \(\Q(\sqrt{21}) \) \( 2^{6} \cdot 3 \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $3.275508622$ $4.650559737$ 1.662050944 \( \frac{1556068}{81} \) \( \bigl[0\) , \( -1\) , \( 0\) , \( -24\) , \( -36\bigr] \) ${y}^2={x}^{3}-{x}^{2}-24{x}-36$
192.1-j5 192.1-j \(\Q(\sqrt{21}) \) \( 2^{6} \cdot 3 \) $1$ $\Z/4\Z$ $\mathrm{SU}(2)$ $0.818877155$ $18.60223895$ 1.662050944 \( \frac{28756228}{3} \) \( \bigl[0\) , \( -1\) , \( 0\) , \( -64\) , \( 220\bigr] \) ${y}^2={x}^{3}-{x}^{2}-64{x}+220$
192.1-j6 192.1-j \(\Q(\sqrt{21}) \) \( 2^{6} \cdot 3 \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $6.551017245$ $1.162639934$ 1.662050944 \( \frac{3065617154}{9} \) \( \bigl[0\) , \( -1\) , \( 0\) , \( -384\) , \( -2772\bigr] \) ${y}^2={x}^{3}-{x}^{2}-384{x}-2772$
192.1-k1 192.1-k \(\Q(\sqrt{21}) \) \( 2^{6} \cdot 3 \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.852762531$ $13.64169646$ 2.538556564 \( -\frac{4864}{3} a + \frac{13568}{3} \) \( \bigl[0\) , \( a - 1\) , \( 0\) , \( 1\) , \( 0\bigr] \) ${y}^2={x}^{3}+\left(a-1\right){x}^{2}+{x}$
192.1-k2 192.1-k \(\Q(\sqrt{21}) \) \( 2^{6} \cdot 3 \) $1$ $\Z/4\Z$ $\mathrm{SU}(2)$ $0.852762531$ $13.64169646$ 2.538556564 \( -\frac{121322980}{9} a + \frac{112888388}{3} \) \( \bigl[0\) , \( a - 1\) , \( 0\) , \( 20 a - 64\) , \( -108 a + 300\bigr] \) ${y}^2={x}^{3}+\left(a-1\right){x}^{2}+\left(20a-64\right){x}-108a+300$
192.1-k3 192.1-k \(\Q(\sqrt{21}) \) \( 2^{6} \cdot 3 \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1.705525063$ $13.64169646$ 2.538556564 \( \frac{53200}{3} a + \frac{121184}{3} \) \( \bigl[0\) , \( a - 1\) , \( 0\) , \( -4\) , \( -4 a + 4\bigr] \) ${y}^2={x}^{3}+\left(a-1\right){x}^{2}-4{x}-4a+4$
192.1-k4 192.1-k \(\Q(\sqrt{21}) \) \( 2^{6} \cdot 3 \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $3.411050126$ $3.410424115$ 2.538556564 \( \frac{5202690124}{3} a + \frac{9319516204}{3} \) \( \bigl[0\) , \( a - 1\) , \( 0\) , \( -20 a - 24\) , \( -76 a - 116\bigr] \) ${y}^2={x}^{3}+\left(a-1\right){x}^{2}+\left(-20a-24\right){x}-76a-116$
192.1-l1 192.1-l \(\Q(\sqrt{21}) \) \( 2^{6} \cdot 3 \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.393259272$ $22.72318029$ 1.950017184 \( \frac{256}{3} a + \frac{4864}{3} \) \( \bigl[0\) , \( -a + 1\) , \( 0\) , \( -a + 1\) , \( 1\bigr] \) ${y}^2={x}^{3}+\left(-a+1\right){x}^{2}+\left(-a+1\right){x}+1$
192.1-l2 192.1-l \(\Q(\sqrt{21}) \) \( 2^{6} \cdot 3 \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.196629636$ $22.72318029$ 1.950017184 \( \frac{77872}{3} a + \frac{145568}{3} \) \( \bigl[0\) , \( -a + 1\) , \( 0\) , \( -6 a - 9\) , \( 15 a + 27\bigr] \) ${y}^2={x}^{3}+\left(-a+1\right){x}^{2}+\left(-6a-9\right){x}+15a+27$
192.1-m1 192.1-m \(\Q(\sqrt{21}) \) \( 2^{6} \cdot 3 \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.146347611$ $9.659230135$ 2.159317701 \( -\frac{25019564800}{81} a + \frac{69836807168}{81} \) \( \bigl[0\) , \( 1\) , \( 0\) , \( a - 5\) , \( -48 a - 81\bigr] \) ${y}^2={x}^{3}+{x}^{2}+\left(a-5\right){x}-48a-81$
192.1-m2 192.1-m \(\Q(\sqrt{21}) \) \( 2^{6} \cdot 3 \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.073173805$ $4.829615067$ 2.159317701 \( \frac{11855696}{2187} a + \frac{35052272}{729} \) \( \bigl[0\) , \( 1\) , \( 0\) , \( -119 a - 220\) , \( -1117 a - 1996\bigr] \) ${y}^2={x}^{3}+{x}^{2}+\left(-119a-220\right){x}-1117a-1996$
192.1-n1 192.1-n \(\Q(\sqrt{21}) \) \( 2^{6} \cdot 3 \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.073173805$ $4.829615067$ 2.159317701 \( -\frac{11855696}{2187} a + \frac{117012512}{2187} \) \( \bigl[0\) , \( 1\) , \( 0\) , \( 119 a - 339\) , \( 1117 a - 3113\bigr] \) ${y}^2={x}^{3}+{x}^{2}+\left(119a-339\right){x}+1117a-3113$
192.1-n2 192.1-n \(\Q(\sqrt{21}) \) \( 2^{6} \cdot 3 \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.146347611$ $9.659230135$ 2.159317701 \( \frac{25019564800}{81} a + \frac{44817242368}{81} \) \( \bigl[0\) , \( 1\) , \( 0\) , \( -a - 4\) , \( 48 a - 129\bigr] \) ${y}^2={x}^{3}+{x}^{2}+\left(-a-4\right){x}+48a-129$
  displayed columns for results

  *The rank, regulator and analytic order of Ш are not known for all curves in the database; curves for which these are unknown will not appear in searches specifying one of these quantities.